- -

Temporal effects of thinning on soil organic carbon pools, basal respiration and enzyme activities in a Mediterranean Holm oak forest

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Temporal effects of thinning on soil organic carbon pools, basal respiration and enzyme activities in a Mediterranean Holm oak forest

Mostrar el registro completo del ítem

Lull Noguera, C.; Bautista, I.; Lidón, A.; Campo García, ADD.; González-Sanchis, M.; Garcia-Prats, A. (2020). Temporal effects of thinning on soil organic carbon pools, basal respiration and enzyme activities in a Mediterranean Holm oak forest. Forest Ecology and Management. 464:1-10. https://doi.org/10.1016/j.foreco.2020.118088

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/163174

Ficheros en el ítem

Metadatos del ítem

Título: Temporal effects of thinning on soil organic carbon pools, basal respiration and enzyme activities in a Mediterranean Holm oak forest
Autor: Lull Noguera, Cristina Bautista, Inmaculada Lidón, Antonio Campo García, Antonio Dámaso Del González-Sanchis, María Garcia-Prats, Alberto
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient
Universitat Politècnica de València. Departamento de Química - Departament de Química
Fecha difusión:
Resumen:
[EN] Soil organic carbon pools have an important role in the maintenance of ecosystems as a source of energy for soil microorganisms. Soil biological and biochemical properties are essential for the decomposition of organic ...[+]
Palabras clave: Adaptive forest management , Silvicultural treatments , Quercus ilex , Woody debris , Organic carbon pools
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Forest Ecology and Management. (issn: 0378-1127 )
DOI: 10.1016/j.foreco.2020.118088
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.foreco.2020.118088
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//CGL2011-28776-C02-02/ES/CARACTERIZACION HIDROLOGICA DE LA ESTRUCTURA FORESTAL A ESCALA PARCELA PARA LA IMPLEMENTACION DE SILVICULTURA ADAPTATIVA/
info:eu-repo/grantAgreement/EC//LIFE17 CCA%2FES%2F000063/EU/Coupling water, fire and climate resilience with biomass production in Forestry to adapt watersheds to climate change/LIFE RESILIENT FORESTS/
info:eu-repo/grantAgreement/MINECO//CGL2014-58127-C3-2-R/ES/DESARROLLO DE CONCEPTOS Y CRITERIOS PARA UNA GESTION FORESTAL DE BASE ECO-HIDROLOGICA COMO MEDIDA DE ADAPTACION AL CAMBIO GLOBAL (SILWAMED)/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/CGL2017-86839-C3-2-R/ES/INCORPORACION DE CRITERIOS ECO-HIDROLOGICOS Y DE RESILIENCIA FRENTE A PERTURBACIONES CLIMATICAS Y DEL FUEGO EN LA PLANIFICACION Y GESTION FORESTAL DE CUENCAS MEDITERRANEAS/
Agradecimientos:
This study is a component of research projects: HYDROSIL (CGL2011-28776-C02-02) and SILWAMED (CGL2014-58+127-C3-2), RESILIENT-FORESTS (LIFE17 CCA/ES/000063) and CEHYRFO-MED (CGL2017-86839-C3-2-R) funded by the Spanish ...[+]
Tipo: Artículo

References

Adamczyk, B., Adamczyk, S., Kukkola, M., Tamminen, P., & Smolander, A. (2015). Logging residue harvest may decrease enzymatic activity of boreal forest soils. Soil Biology and Biochemistry, 82, 74-80. doi:10.1016/j.soilbio.2014.12.017

Allison, S. D., & Vitousek, P. M. (2005). Responses of extracellular enzymes to simple and complex nutrient inputs. Soil Biology and Biochemistry, 37(5), 937-944. doi:10.1016/j.soilbio.2004.09.014

Bastida, F., Moreno, J. L., Hernández, T., & García, C. (2007). The long-term effects of the management of a forest soil on its carbon content, microbial biomass and activity under a semi-arid climate. Applied Soil Ecology, 37(1-2), 53-62. doi:10.1016/j.apsoil.2007.03.010 [+]
Adamczyk, B., Adamczyk, S., Kukkola, M., Tamminen, P., & Smolander, A. (2015). Logging residue harvest may decrease enzymatic activity of boreal forest soils. Soil Biology and Biochemistry, 82, 74-80. doi:10.1016/j.soilbio.2014.12.017

Allison, S. D., & Vitousek, P. M. (2005). Responses of extracellular enzymes to simple and complex nutrient inputs. Soil Biology and Biochemistry, 37(5), 937-944. doi:10.1016/j.soilbio.2004.09.014

Bastida, F., Moreno, J. L., Hernández, T., & García, C. (2007). The long-term effects of the management of a forest soil on its carbon content, microbial biomass and activity under a semi-arid climate. Applied Soil Ecology, 37(1-2), 53-62. doi:10.1016/j.apsoil.2007.03.010

Bastida, F., López-Mondéjar, R., Baldrian, P., Andrés-Abellán, M., Jehmlich, N., Torres, I. F., … López-Serrano, F. R. (2019). When drought meets forest management: Effects on the soil microbial community of a Holm oak forest ecosystem. Science of The Total Environment, 662, 276-286. doi:10.1016/j.scitotenv.2019.01.233

Bolat, İ. (2013). The effect of thinning on microbial biomass C, N and basal respiration in black pine forest soils in Mudurnu, Turkey. European Journal of Forest Research, 133(1), 131-139. doi:10.1007/s10342-013-0752-8

Boyer, J. N., & Groffman, P. M. (1996). Bioavailability of water extractable organic carbon fractions in forest and agricultural soil profiles. Soil Biology and Biochemistry, 28(6), 783-790. doi:10.1016/0038-0717(96)00015-6

Cabon, A., Mouillot, F., Lempereur, M., Ourcival, J.-M., Simioni, G., & Limousin, J.-M. (2018). Thinning increases tree growth by delaying drought-induced growth cessation in a Mediterranean evergreen oak coppice. Forest Ecology and Management, 409, 333-342. doi:10.1016/j.foreco.2017.11.030

Chen, X., Chen, H. Y. H., Chen, X., Wang, J., Chen, B., Wang, D., & Guan, Q. (2016). Soil labile organic carbon and carbon-cycle enzyme activities under different thinning intensities in Chinese fir plantations. Applied Soil Ecology, 107, 162-169. doi:10.1016/j.apsoil.2016.05.016

Cheng, X., Yu, M., & Wang, G. (2017). Effects of Thinning on Soil Organic Carbon Fractions and Soil Properties in Cunninghamia lanceolata Stands in Eastern China. Forests, 8(6), 198. doi:10.3390/f8060198

Creamer, R. E., Schulte, R. P. O., Stone, D., Gal, A., Krogh, P. H., Lo Papa, G., … Winding, A. (2014). Measuring basal soil respiration across Europe: Do incubation temperature and incubation period matter? Ecological Indicators, 36, 409-418. doi:10.1016/j.ecolind.2013.08.015

De Moraes Sá, J. C., Potma Gonçalves, D. R., Ferreira, L. A., Mishra, U., Inagaki, T. M., Ferreira Furlan, F. J., … de Oliveira Ferreira, A. (2018). Soil carbon fractions and biological activity based indices can be used to study the impact of land management and ecological successions. Ecological Indicators, 84, 96-105. doi:10.1016/j.ecolind.2017.08.029

Del Campo, A. D., González-Sanchis, M., Lidón, A., Ceacero, C. J., & García-Prats, A. (2018). Rainfall partitioning after thinning in two low-biomass semiarid forests: Impact of meteorological variables and forest structure on the effectiveness of water-oriented treatments. Journal of Hydrology, 565, 74-86. doi:10.1016/j.jhydrol.2018.08.013

Del Campo, A. D., González-Sanchis, M., García-Prats, A., Ceacero, C. J., & Lull, C. (2019). The impact of adaptive forest management on water fluxes and growth dynamics in a water-limited low-biomass oak coppice. Agricultural and Forest Meteorology, 264, 266-282. doi:10.1016/j.agrformet.2018.10.016

Di Prima, S., Bagarello, V., Angulo-Jaramillo, R., Bautista, I., Cerdà, A., del Campo, A., … Maetzke, F. (2017). Impacts of thinning of a Mediterranean oak forest on soil properties influencing water infiltration. Journal of Hydrology and Hydromechanics, 65(3), 276-286. doi:10.1515/johh-2017-0016

Ducrey, M., 1992. Quelle sylviculture et quel avenir pour les taillis de chêne vert (Quercus ilex L.) de la Région méditerranéenne française. Revue forestière française 10.4267/2042/26291.

Fernández-Alonso, M. J., Curiel Yuste, J., Kitzler, B., Ortiz, C., & Rubio, A. (2018). Changes in litter chemistry associated with global change-driven forest succession resulted in time-decoupled responses of soil carbon and nitrogen cycles. Soil Biology and Biochemistry, 120, 200-211. doi:10.1016/j.soilbio.2018.02.013

Fierer, N. (2017). Embracing the unknown: disentangling the complexities of the soil microbiome. Nature Reviews Microbiology, 15(10), 579-590. doi:10.1038/nrmicro.2017.87

Flores-Rentería, D., Curiel Yuste, J., Rincón, A., Brearley, F. Q., García-Gil, J. C., & Valladares, F. (2015). Habitat Fragmentation can Modulate Drought Effects on the Plant-soil-microbial System in Mediterranean Holm Oak (Quercus ilex) Forests. Microbial Ecology, 69(4), 798-812. doi:10.1007/s00248-015-0584-9

Fröberg, M., Jardine, P. M., Hanson, P. J., Swanston, C. W., Todd, D. E., Tarver, J. R., & Garten, C. T. (2007). Low Dissolved Organic Carbon Input from Fresh Litter to Deep Mineral Soils. Soil Science Society of America Journal, 71(2), 347-354. doi:10.2136/sssaj2006.0188

Garcia-Prats, A., González-Sanchis, M., Del Campo, A. D., & Lull, C. (2018). Hydrology-oriented forest management trade-offs. A modeling framework coupling field data, simulation results and Bayesian Networks. Science of The Total Environment, 639, 725-741. doi:10.1016/j.scitotenv.2018.05.134

Geng, Y., Dighton, J., & Gray, D. (2012). The effects of thinning and soil disturbance on enzyme activities under pitch pine soil in New Jersey Pinelands. Applied Soil Ecology, 62, 1-7. doi:10.1016/j.apsoil.2012.07.001

Gliksman, D., Haenel, S., Osem, Y., Yakir, D., Zangy, E., Preisler, Y., & Grünzweig, J. M. (2017). Litter decomposition in Mediterranean pine forests is enhanced by reduced canopy cover. Plant and Soil, 422(1-2), 317-329. doi:10.1007/s11104-017-3366-y

Grosso, F., Iovieno, P., Alfani, A., & De Nicola, F. (2018). Structure and activity of soil microbial communities in three Mediterranean forests. Applied Soil Ecology, 130, 280-287. doi:10.1016/j.apsoil.2018.07.007

Hedo de Santiago, J., Lucas-Borja, M. E., Wic-Baena, C., Andrés-Abellán, M., & de las Heras, J. (2015). Effects of Thinning and Induced Drought on Microbiological Soil Properties and Plant Species Diversity at Dry and Semiarid Locations. Land Degradation & Development, 27(4), 1151-1162. doi:10.1002/ldr.2361

Huang, W. Z., & Schoenau, J. J. (1996). Distribution of water-soluble organic carbon in an aspen forest soil. Canadian Journal of Forest Research, 26(7), 1266-1272. doi:10.1139/x26-141

Huang, J., Ji, M., Xie, Y., Wang, S., He, Y., & Ran, J. (2015). Global semi-arid climate change over last 60 years. Climate Dynamics, 46(3-4), 1131-1150. doi:10.1007/s00382-015-2636-8

Hytönen, J., & Moilanen, M. (2014). Effect of harvesting method on the amount of logging residues in the thinning of Scots pine stands. Biomass and Bioenergy, 67, 347-353. doi:10.1016/j.biombioe.2014.05.004

Jandl, R., Spathelf, P., Bolte, A., & Prescott, C. E. (2019). Forest adaptation to climate change—is non-management an option? Annals of Forest Science, 76(2). doi:10.1007/s13595-019-0827-x

JIANG, P.-K., & XU, Q.-F. (2006). Abundance and Dynamics of Soil Labile Carbon Pools Under Different Types of Forest Vegetation. Pedosphere, 16(4), 505-511. doi:10.1016/s1002-0160(06)60081-7

Johnson, D. W., & Todd, D. E. (1998). Harvesting Effects on Long-Term Changes in Nutrient Pools of Mixed Oak Forest. Soil Science Society of America Journal, 62(6), 1725-1735. doi:10.2136/sssaj1998.03615995006200060034x

Johnson, D. W., & Curtis, P. S. (2001). Effects of forest management on soil C and N storage: meta analysis. Forest Ecology and Management, 140(2-3), 227-238. doi:10.1016/s0378-1127(00)00282-6

Kim, C., Son, Y., Lee, W.-K., Jeong, J., & Noh, N.-J. (2009). Influences of forest tending works on carbon distribution and cycling in a Pinus densiflora S. et Z. stand in Korea. Forest Ecology and Management, 257(5), 1420-1426. doi:10.1016/j.foreco.2008.12.015

Kim, S., Han, S. H., Li, G., Yoon, T. K., Lee, S.-T., Kim, C., & Son, Y. (2016). Effects of thinning intensity on nutrient concentration and enzyme activity in Larix kaempferi forest soils. Journal of Ecology and Environment, 40(1). doi:10.1186/s41610-016-0007-y

Kim, S., Li, G., Han, S. H., Kim, H.-J., Kim, C., Lee, S.-T., & Son, Y. (2018). Thinning affects microbial biomass without changing enzyme activity in the soil of Pinus densiflora Sieb. et Zucc. forests after 7 years. Annals of Forest Science, 75(1). doi:10.1007/s13595-018-0690-1

Kim, S., Li, G., Han, S. H., Kim, C., Lee, S.-T., & Son, Y. (2019). Microbial biomass and enzymatic responses to temperate oak and larch forest thinning: Influential factors for the site-specific changes. Science of The Total Environment, 651, 2068-2079. doi:10.1016/j.scitotenv.2018.10.153

Lee, S.-H., Kim, S., & Kim, H.-J. (2017). Effects of thinning intensity on understory vegetation inChamaecyparis obtusastands in South Korea. Forest Science and Technology, 14(1), 7-15. doi:10.1080/21580103.2017.1409661

Leinemann, T., Preusser, S., Mikutta, R., Kalbitz, K., Cerli, C., Höschen, C., … Guggenberger, G. (2018). Multiple exchange processes on mineral surfaces control the transport of dissolved organic matter through soil profiles. Soil Biology and Biochemistry, 118, 79-90. doi:10.1016/j.soilbio.2017.12.006

Li, Y., Zhang, J., Chang, S. X., Jiang, P., Zhou, G., Fu, S., … Lin, L. (2013). Long-term intensive management effects on soil organic carbon pools and chemical composition in Moso bamboo (Phyllostachys pubescens) forests in subtropical China. Forest Ecology and Management, 303, 121-130. doi:10.1016/j.foreco.2013.04.021

López-Serrano, F. R., Rubio, E., Dadi, T., Moya, D., Andrés-Abellán, M., García-Morote, F. A., … Martínez-García, E. (2016). Influences of recovery from wildfire and thinning on soil respiration of a Mediterranean mixed forest. Science of The Total Environment, 573, 1217-1231. doi:10.1016/j.scitotenv.2016.03.242

Michalzik, B., Kalbitz, K., Park, J.-H., Solinger, S., & Matzner, E. (2001). Biogeochemistry, 52(2), 173-205. doi:10.1023/a:1006441620810

Nannipieri, P., Ceccanti, B., Cervelli, S., & Matarese, E. (1980). Extraction of Phosphatase, Urease, Proteases, Organic Carbon, and Nitrogen from Soil. Soil Science Society of America Journal, 44(5), 1011-1016. doi:10.2136/sssaj1980.03615995004400050028x

Nave, L. E., Vance, E. D., Swanston, C. W., & Curtis, P. S. (2010). Harvest impacts on soil carbon storage in temperate forests. Forest Ecology and Management, 259(5), 857-866. doi:10.1016/j.foreco.2009.12.009

Ntoko, F. A., Gardner, T. G., Senwo, Z. N., & Acosta-Martinez, V. (2018). Microbial Compositions and Enzymes of a Forest Ecosystem in Alabama: Initial Response to Thinning and Burning Management Selections. Open Journal of Forestry, 08(03), 328-343. doi:10.4236/ojf.2018.83021

Qing-kui, W., Si-long, W., & Shi-jian, D. (2005). Comparative study on active soil organic matter in Chinese fir plantation and native broad-leaved forest in subtropical China. Journal of Forestry Research, 16(1), 23-26. doi:10.1007/bf02856848

Sall, S. N., & Chotte, J.-L. (2002). PHOSPHATASE AND UREASE ACTIVITIES IN A TROPICAL SANDY SOIL AS AFFECTED BY SOIL WATER-HOLDING CAPACITY AND ASSAY CONDITIONS. Communications in Soil Science and Plant Analysis, 33(19-20), 3745-3755. doi:10.1081/css-120015919

Sardans, J., & Peñuelas, J. (2005). Drought decreases soil enzyme activity in a Mediterranean Quercus ilex L. forest. Soil Biology and Biochemistry, 37(3), 455-461. doi:10.1016/j.soilbio.2004.08.004

SCAGLIA, B., & ADANI, F. (2009). Biodegradability of soil water soluble organic carbon extracted from seven different soils. Journal of Environmental Sciences, 21(5), 641-646. doi:10.1016/s1001-0742(08)62319-0

Schmidt, M. W. I., Torn, M. S., Abiven, S., Dittmar, T., Guggenberger, G., Janssens, I. A., … Trumbore, S. E. (2011). Persistence of soil organic matter as an ecosystem property. Nature, 478(7367), 49-56. doi:10.1038/nature10386

Shi, B., Zhang, J., Wang, C., Ma, J., & Sun, W. (2018). Responses of hydrolytic enzyme activities in saline-alkaline soil to mixed inorganic and organic nitrogen addition. Scientific Reports, 8(1). doi:10.1038/s41598-018-22813-9

Sinsabaugh, R. L., Lauber, C. L., Weintraub, M. N., Ahmed, B., Allison, S. D., Crenshaw, C., … Zeglin, L. H. (2008). Stoichiometry of soil enzyme activity at global scale. Ecology Letters, 11(11), 1252-1264. doi:10.1111/j.1461-0248.2008.01245.x

Son, Y., Jun, Y. C., Lee, Y. Y., Kim, R. H., & Yang, S. Y. (2004). Soil Carbon Dioxide Evolution, Litter Decomposition, and Nitrogen Availability Four Years after Thinning in a Japanese Larch Plantation. Communications in Soil Science and Plant Analysis, 35(7-8), 1111-1122. doi:10.1081/css-120030593

Sparling, G. (1992). Ratio of microbial biomass carbon to soil organic carbon as a sensitive indicator of changes in soil organic matter. Soil Research, 30(2), 195. doi:10.1071/sr9920195

Tabatabai, M. A., & Bremner, J. M. (1969). Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biology and Biochemistry, 1(4), 301-307. doi:10.1016/0038-0717(69)90012-1

Trasar-Cepeda, C., Leirós, M. C., & Gil-Sotres, F. (2008). Hydrolytic enzyme activities in agricultural and forest soils. Some implications for their use as indicators of soil quality. Soil Biology and Biochemistry, 40(9), 2146-2155. doi:10.1016/j.soilbio.2008.03.015

Vance, E. D., Brookes, P. C., & Jenkinson, D. S. (1987). An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry, 19(6), 703-707. doi:10.1016/0038-0717(87)90052-6

WALKLEY, A., & BLACK, I. A. (1934). AN EXAMINATION OF THE DEGTJAREFF METHOD FOR DETERMINING SOIL ORGANIC MATTER, AND A PROPOSED MODIFICATION OF THE CHROMIC ACID TITRATION METHOD. Soil Science, 37(1), 29-38. doi:10.1097/00010694-193401000-00003

Wan, X., Xiao, L., Vadeboncoeur, M. A., Johnson, C. E., & Huang, Z. (2018). Response of mineral soil carbon storage to harvest residue retention depends on soil texture: A meta-analysis. Forest Ecology and Management, 408, 9-15. doi:10.1016/j.foreco.2017.10.028

Wang, Q., Xiao, F., Zhang, F., & Wang, S. (2013). Labile soil organic carbon and microbial activity in three subtropical plantations. Forestry, 86(5), 569-574. doi:10.1093/forestry/cpt024

Wic Baena, C., Andrés-Abellán, M., Lucas-Borja, M. E., Martínez-García, E., García-Morote, F. A., Rubio, E., & López-Serrano, F. R. (2013). Thinning and recovery effects on soil properties in two sites of a Mediterranean forest, in Cuenca Mountain (South-eastern of Spain). Forest Ecology and Management, 308, 223-230. doi:10.1016/j.foreco.2013.06.065

Yakovchenko, V. P., & Sikora, L. J. (1998). Modified dichromate method for determining low concentrations of extractable organic carbon in soil. Communications in Soil Science and Plant Analysis, 29(3-4), 421-433. doi:10.1080/00103629809369955

Yang, A.-R., Son, Y., Noh, N. J., Lee, S. K., Jo, W., Son, J.-A., … Hwang, J. (2011). Effect of thinning on carbon storage in soil, forest floor and coarse woody debris ofPinus densiflorastands with different stand ages in Gangwon-do, central Korea. Forest Science and Technology, 7(1), 30-37. doi:10.1080/21580103.2011.559936

Zhang, X., Guan, D., Li, W., Sun, D., Jin, C., Yuan, F., … Wu, J. (2018). The effects of forest thinning on soil carbon stocks and dynamics: A meta-analysis. Forest Ecology and Management, 429, 36-43. doi:10.1016/j.foreco.2018.06.027

Zhao, B., Cao, J., Geng, Y., Zhao, X., & von Gadow, K. (2019). Inconsistent responses of soil respiration and its components to thinning intensity in a Pinus tabuliformis plantation in northern China. Agricultural and Forest Meteorology, 265, 370-380. doi:10.1016/j.agrformet.2018.11.034

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem