- -

Robustness of RC building structures with infill masonry walls: tests on a purpose-built structure

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Robustness of RC building structures with infill masonry walls: tests on a purpose-built structure

Mostrar el registro completo del ítem

Buitrago, M.; Bertolesi, E.; Juan Sagaseta; Calderón García, PA.; Adam, JM. (2021). Robustness of RC building structures with infill masonry walls: tests on a purpose-built structure. Engineering Structures. 226:1-15. https://doi.org/10.1016/j.engstruct.2020.111384

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/163177

Ficheros en el ítem

Metadatos del ítem

Título: Robustness of RC building structures with infill masonry walls: tests on a purpose-built structure
Autor: Buitrago, Manuel Bertolesi, Elisa Juan Sagaseta Calderón García, Pedro Antonio Adam, Jose M
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil
Fecha difusión:
Resumen:
[EN] Structural robustness is a significant property towards improving resilience of buildings, i.e. enhance their ability to withstand and recover from extreme events which often can cause local damage and progressive ...[+]
Palabras clave: Extreme events , Infill masonry walls , Progressive collapse , RC structures , Corner-columns , Building , Robustness
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Engineering Structures. (issn: 0141-0296 )
DOI: 10.1016/j.engstruct.2020.111384
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.engstruct.2020.111384
Código del Proyecto:
info:eu-repo/grantAgreement/UPV//PAID-10-17/
info:eu-repo/grantAgreement/MECD//PRX17%2F00302/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/BIA2017-88322-R/ES/COLAPSO PROGRESIVO Y ROBUSTEZ EN EDIFICIOS CON ESTRUCTURA PREFABRICADA DE HORMIGON/
info:eu-repo/grantAgreement/GVA//APOSTD%2F2019%2F101/
info:eu-repo/grantAgreement/AEI//FJCI-2018-38071/
Agradecimientos:
This work was carried out with the support of a 2017 Leonardo Grant for Researchers and Cultural Creators from the BBVA Foundation. The authors would also like to express their gratitude to the Levantina, Ingenieria y ...[+]
Tipo: Artículo

References

American Society of Civil Engineers (ASCE). Minimum design loads for buildings and other structures (ASCE/SEI 7-05). Struct Eng Inst ASCE; 2005.

DoD. Department of Defense. Design of buildings to resist progressive collapse (UFC 4-023-03); 2009.

GSA. General Services Administration. Progressive collapse analysis and design guidelines for new federal office buildings and major organization projects; 2013. [+]
American Society of Civil Engineers (ASCE). Minimum design loads for buildings and other structures (ASCE/SEI 7-05). Struct Eng Inst ASCE; 2005.

DoD. Department of Defense. Design of buildings to resist progressive collapse (UFC 4-023-03); 2009.

GSA. General Services Administration. Progressive collapse analysis and design guidelines for new federal office buildings and major organization projects; 2013.

EN 1991-1-7. Eurocode 1: Actions on structures – Part 1-7: General actions – Accidental actions; 2006.

Adam, J. M., Parisi, F., Sagaseta, J., & Lu, X. (2018). Research and practice on progressive collapse and robustness of building structures in the 21st century. Engineering Structures, 173, 122-149. doi:10.1016/j.engstruct.2018.06.082

Baker JF, Williams EL, Lax D. The design of framed buildings against high-explosive bombs. In: Civ. Eng. war - Inst. Civ. Eng., London: Thomas Telford Ltd; 1948, p. 80–112. doi: 10.1680/ciwv3.45170.0006.

Miller, D., & Doh, J.-H. (2014). Incorporating sustainable development principles into building design: a review from a structural perspective including case study. The Structural Design of Tall and Special Buildings, 24(6), 421-439. doi:10.1002/tal.1172

Kim, J., & Lee, H. (2013). Progressive collapse-resisting capacity of framed structures with infill steel panels. Journal of Constructional Steel Research, 89, 145-152. doi:10.1016/j.jcsr.2013.07.004

Xavier, F. B., Macorini, L., Izzuddin, B. A., Chisari, C., Gattesco, N., Noe, S., & Amadio, C. (2017). Pushdown Tests on Masonry Infilled Frames for Assessment of Building Robustness. Journal of Structural Engineering, 143(9), 04017088. doi:10.1061/(asce)st.1943-541x.0001777

Eren, N., Brunesi, E., & Nascimbene, R. (2019). Influence of masonry infills on the progressive collapse resistance of reinforced concrete framed buildings. Engineering Structures, 178, 375-394. doi:10.1016/j.engstruct.2018.10.056

Yu, J., Gan, Y.-P., Wu, J., & Wu, H. (2019). Effect of concrete masonry infill walls on progressive collapse performance of reinforced concrete infilled frames. Engineering Structures, 191, 179-193. doi:10.1016/j.engstruct.2019.04.048

Hafez, I., Khalil, A., & Mourad, S. (2013). Alternate Path Method Analysis of RC Structures Using Applied Element Method. International Journal of Protective Structures, 4(1), 45-64. doi:10.1260/2041-4196.4.1.45

Farazman, S., Izzuddin, B. A., & Cormie, D. (2013). Influence of Unreinforced Masonry Infill Panels on the Robustness of Multistory Buildings. Journal of Performance of Constructed Facilities, 27(6), 673-682. doi:10.1061/(asce)cf.1943-5509.0000392

Helmy, H., Hadhoud, H., & Mourad, S. (2015). Infilled masonry walls contribution in mitigating progressive collapse of multistory reinforced concrete structures according to UFC guidelines. International Journal of Advanced Structural Engineering, 7(3), 233-247. doi:10.1007/s40091-015-0094-5

Xavier, F. B., Macorini, L., & Izzuddin, B. A. (2015). Robustness of Multistory Buildings with Masonry Infill. Journal of Performance of Constructed Facilities, 29(5). doi:10.1061/(asce)cf.1943-5509.0000684

Shan, S., Li, S., Xu, S., & Xie, L. (2016). Experimental study on the progressive collapse performance of RC frames with infill walls. Engineering Structures, 111, 80-92. doi:10.1016/j.engstruct.2015.12.010

Li, S., Shan, S., Zhai, C., & Xie, L. (2016). Experimental and numerical study on progressive collapse process of RC frames with full-height infill walls. Engineering Failure Analysis, 59, 57-68. doi:10.1016/j.engfailanal.2015.11.020

Qian, K., & Li, B. (2017). Effects of Masonry Infill Wall on the Performance of RC Frames to Resist Progressive Collapse. Journal of Structural Engineering, 143(9), 04017118. doi:10.1061/(asce)st.1943-541x.0001860

Brodsky, A., & Yankelevsky, D. Z. (2017). Resistance of reinforced concrete frames with masonry infill walls to in-plane gravity loading due to loss of a supporting column. Engineering Structures, 140, 134-150. doi:10.1016/j.engstruct.2017.02.061

Baghi, H., Oliveira, A., Valença, J., Cavaco, E., Neves, L., & Júlio, E. (2018). Behavior of reinforced concrete frame with masonry infill wall subjected to vertical load. Engineering Structures, 171, 476-487. doi:10.1016/j.engstruct.2018.06.001

Brodsky, A., Rabinovitch, O., & Yankelevsky, D. Z. (2018). Determination of the interaction between a masonry wall and a confining frame. Engineering Structures, 167, 214-226. doi:10.1016/j.engstruct.2018.04.001

Ma, F., Gilbert, B. P., Guan, H., Xue, H., Lu, X., & Li, Y. (2019). Experimental study on the progressive collapse behaviour of RC flat plate substructures subjected to corner column removal scenarios. Engineering Structures, 180, 728-741. doi:10.1016/j.engstruct.2018.11.043

Adam, J. M., Buitrago, M., Bertolesi, E., Sagaseta, J., & Moragues, J. J. (2020). Dynamic performance of a real-scale reinforced concrete building test under a corner-column failure scenario. Engineering Structures, 210, 110414. doi:10.1016/j.engstruct.2020.110414

EN 1990. Eurocode: Basis of structural design; 2002.

Olmati, P., Sagaseta, J., Cormie, D., & Jones, A. E. K. (2017). Simplified reliability analysis of punching in reinforced concrete flat slab buildings under accidental actions. Engineering Structures, 130, 83-98. doi:10.1016/j.engstruct.2016.09.061

Russell, J. M., Owen, J. S., & Hajirasouliha, I. (2015). Experimental investigation on the dynamic response of RC flat slabs after a sudden column loss. Engineering Structures, 99, 28-41. doi:10.1016/j.engstruct.2015.04.040

EN 1996-1-1: Eurocode 6: Design of masonry structures – Part 1-1: General rules for reinforced and unreinforced masonry structures; 2005.

ASCE/SEI. Standard 41-06: Seismic rehabilitation of existing structures. In: ASCE 2007. Reston, Virginia, USA; 2007.

Masonry Standards Joint Committee (MSJC). Builiding code requirements and specification for masonry structures and related commentaries. Farmington Hills: American Concrete Institute; 1994.

The ministry of public works and settlements. Turkish Code for Buildings in Seismic Zones (TEC). Ankara, Turquía; 2007.

Paulay T, Pristley MJN. Seismic design of reinforced concrete and masonry buildings. New York: A Wiley Intersci Publ; 1992.

Abaqus. Release 6.14. Theory and user’s manuals. Pawtucket (RI, USA): Hibbit, Karlsson and Sorensen Inc.; 2014.

Ozkaynak, H., Yuksel, E., Yalcin, C., Dindar, A. A., & Buyukozturk, O. (2013). Masonry infill walls in reinforced concrete frames as a source of structural damping. Earthquake Engineering & Structural Dynamics, 43(7), 949-968. doi:10.1002/eqe.2380

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem