- -

Robustness of RC building structures with infill masonry walls: tests on a purpose-built structure

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Robustness of RC building structures with infill masonry walls: tests on a purpose-built structure

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Buitrago, Manuel es_ES
dc.contributor.author Bertolesi, Elisa es_ES
dc.contributor.author Juan Sagaseta es_ES
dc.contributor.author Calderón García, Pedro Antonio es_ES
dc.contributor.author Adam, Jose M es_ES
dc.date.accessioned 2021-03-05T04:31:55Z
dc.date.available 2021-03-05T04:31:55Z
dc.date.issued 2021-01-01 es_ES
dc.identifier.issn 0141-0296 es_ES
dc.identifier.uri http://hdl.handle.net/10251/163177
dc.description.abstract [EN] Structural robustness is a significant property towards improving resilience of buildings, i.e. enhance their ability to withstand and recover from extreme events which often can cause local damage and progressive collapse. It is widely accepted that robustness depends on the capacity of the structure to activate alternative load paths (ALPs) after the failure of load-bearing elements, e.g. columns. Early evidence during World War II showed that progressive collapse of some buildings was avoided by the presence of masonry infill walls. Subsequent studies focused on this effect for cases of sudden column removal although most of these studies were analytical, numerical and only looked at internal columns which are generally less vulnerable to accidental events compared to corner and edge columns. The aim of this study was to analyse how infill walls can improve the robustness of reinforced concrete (RC) buildings in corner columns failure scenarios. A purpose-built 3D two-storey full-scale RC building structure with infill masonry walls was tested. The contribution of masonry infill walls was analysed in terms of: i) load redistribution, ii) ALPs, and iii) Dynamic Amplification Factors (DAFs) to be applied in linear-static analyses. The test was highly monitored by 38 strain gauges, 38 LVDTs and 2 accelerometers to register the vertical and lateral response. The results showed that masonry infill walls had a significant influence on the structural response and activated the predominant ALPs at very small deflections. es_ES
dc.description.sponsorship This work was carried out with the support of a 2017 Leonardo Grant for Researchers and Cultural Creators from the BBVA Foundation. The authors would also like to express their gratitude to the Levantina, Ingenieria y Construccion S.L. (LIC) company for funding the construction of the building, and to the Generalitat Valenciana/Fons Social Europeu [APOSTD/2019/101] and Universitat Politecnica de Valencia [PAID-10-17] for funding received under different postdoctoral programs. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Engineering Structures es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Extreme events es_ES
dc.subject Infill masonry walls es_ES
dc.subject Progressive collapse es_ES
dc.subject RC structures es_ES
dc.subject Corner-columns es_ES
dc.subject Building es_ES
dc.subject Robustness es_ES
dc.subject.classification INGENIERIA DE LA CONSTRUCCION es_ES
dc.title Robustness of RC building structures with infill masonry walls: tests on a purpose-built structure es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.engstruct.2020.111384 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-10-17/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MECD//PRX17%2F00302/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/BIA2017-88322-R/ES/COLAPSO PROGRESIVO Y ROBUSTEZ EN EDIFICIOS CON ESTRUCTURA PREFABRICADA DE HORMIGON/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//APOSTD%2F2019%2F101/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//FJCI-2018-38071/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil es_ES
dc.description.bibliographicCitation Buitrago, M.; Bertolesi, E.; Juan Sagaseta; Calderón García, PA.; Adam, JM. (2021). Robustness of RC building structures with infill masonry walls: tests on a purpose-built structure. Engineering Structures. 226:1-15. https://doi.org/10.1016/j.engstruct.2020.111384 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.engstruct.2020.111384 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 15 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 226 es_ES
dc.relation.pasarela S\418495 es_ES
dc.contributor.funder Fundación BBVA es_ES
dc.contributor.funder European Social Fund es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Ministerio de Educación, Cultura y Deporte es_ES
dc.contributor.funder Engineering and Physical Sciences Research Council, Reino Unido es_ES
dc.description.references American Society of Civil Engineers (ASCE). Minimum design loads for buildings and other structures (ASCE/SEI 7-05). Struct Eng Inst ASCE; 2005. es_ES
dc.description.references DoD. Department of Defense. Design of buildings to resist progressive collapse (UFC 4-023-03); 2009. es_ES
dc.description.references GSA. General Services Administration. Progressive collapse analysis and design guidelines for new federal office buildings and major organization projects; 2013. es_ES
dc.description.references EN 1991-1-7. Eurocode 1: Actions on structures – Part 1-7: General actions – Accidental actions; 2006. es_ES
dc.description.references Adam, J. M., Parisi, F., Sagaseta, J., & Lu, X. (2018). Research and practice on progressive collapse and robustness of building structures in the 21st century. Engineering Structures, 173, 122-149. doi:10.1016/j.engstruct.2018.06.082 es_ES
dc.description.references Baker JF, Williams EL, Lax D. The design of framed buildings against high-explosive bombs. In: Civ. Eng. war - Inst. Civ. Eng., London: Thomas Telford Ltd; 1948, p. 80–112. doi: 10.1680/ciwv3.45170.0006. es_ES
dc.description.references Miller, D., & Doh, J.-H. (2014). Incorporating sustainable development principles into building design: a review from a structural perspective including case study. The Structural Design of Tall and Special Buildings, 24(6), 421-439. doi:10.1002/tal.1172 es_ES
dc.description.references Kim, J., & Lee, H. (2013). Progressive collapse-resisting capacity of framed structures with infill steel panels. Journal of Constructional Steel Research, 89, 145-152. doi:10.1016/j.jcsr.2013.07.004 es_ES
dc.description.references Xavier, F. B., Macorini, L., Izzuddin, B. A., Chisari, C., Gattesco, N., Noe, S., & Amadio, C. (2017). Pushdown Tests on Masonry Infilled Frames for Assessment of Building Robustness. Journal of Structural Engineering, 143(9), 04017088. doi:10.1061/(asce)st.1943-541x.0001777 es_ES
dc.description.references Eren, N., Brunesi, E., & Nascimbene, R. (2019). Influence of masonry infills on the progressive collapse resistance of reinforced concrete framed buildings. Engineering Structures, 178, 375-394. doi:10.1016/j.engstruct.2018.10.056 es_ES
dc.description.references Yu, J., Gan, Y.-P., Wu, J., & Wu, H. (2019). Effect of concrete masonry infill walls on progressive collapse performance of reinforced concrete infilled frames. Engineering Structures, 191, 179-193. doi:10.1016/j.engstruct.2019.04.048 es_ES
dc.description.references Hafez, I., Khalil, A., & Mourad, S. (2013). Alternate Path Method Analysis of RC Structures Using Applied Element Method. International Journal of Protective Structures, 4(1), 45-64. doi:10.1260/2041-4196.4.1.45 es_ES
dc.description.references Farazman, S., Izzuddin, B. A., & Cormie, D. (2013). Influence of Unreinforced Masonry Infill Panels on the Robustness of Multistory Buildings. Journal of Performance of Constructed Facilities, 27(6), 673-682. doi:10.1061/(asce)cf.1943-5509.0000392 es_ES
dc.description.references Helmy, H., Hadhoud, H., & Mourad, S. (2015). Infilled masonry walls contribution in mitigating progressive collapse of multistory reinforced concrete structures according to UFC guidelines. International Journal of Advanced Structural Engineering, 7(3), 233-247. doi:10.1007/s40091-015-0094-5 es_ES
dc.description.references Xavier, F. B., Macorini, L., & Izzuddin, B. A. (2015). Robustness of Multistory Buildings with Masonry Infill. Journal of Performance of Constructed Facilities, 29(5). doi:10.1061/(asce)cf.1943-5509.0000684 es_ES
dc.description.references Shan, S., Li, S., Xu, S., & Xie, L. (2016). Experimental study on the progressive collapse performance of RC frames with infill walls. Engineering Structures, 111, 80-92. doi:10.1016/j.engstruct.2015.12.010 es_ES
dc.description.references Li, S., Shan, S., Zhai, C., & Xie, L. (2016). Experimental and numerical study on progressive collapse process of RC frames with full-height infill walls. Engineering Failure Analysis, 59, 57-68. doi:10.1016/j.engfailanal.2015.11.020 es_ES
dc.description.references Qian, K., & Li, B. (2017). Effects of Masonry Infill Wall on the Performance of RC Frames to Resist Progressive Collapse. Journal of Structural Engineering, 143(9), 04017118. doi:10.1061/(asce)st.1943-541x.0001860 es_ES
dc.description.references Brodsky, A., & Yankelevsky, D. Z. (2017). Resistance of reinforced concrete frames with masonry infill walls to in-plane gravity loading due to loss of a supporting column. Engineering Structures, 140, 134-150. doi:10.1016/j.engstruct.2017.02.061 es_ES
dc.description.references Baghi, H., Oliveira, A., Valença, J., Cavaco, E., Neves, L., & Júlio, E. (2018). Behavior of reinforced concrete frame with masonry infill wall subjected to vertical load. Engineering Structures, 171, 476-487. doi:10.1016/j.engstruct.2018.06.001 es_ES
dc.description.references Brodsky, A., Rabinovitch, O., & Yankelevsky, D. Z. (2018). Determination of the interaction between a masonry wall and a confining frame. Engineering Structures, 167, 214-226. doi:10.1016/j.engstruct.2018.04.001 es_ES
dc.description.references Ma, F., Gilbert, B. P., Guan, H., Xue, H., Lu, X., & Li, Y. (2019). Experimental study on the progressive collapse behaviour of RC flat plate substructures subjected to corner column removal scenarios. Engineering Structures, 180, 728-741. doi:10.1016/j.engstruct.2018.11.043 es_ES
dc.description.references Adam, J. M., Buitrago, M., Bertolesi, E., Sagaseta, J., & Moragues, J. J. (2020). Dynamic performance of a real-scale reinforced concrete building test under a corner-column failure scenario. Engineering Structures, 210, 110414. doi:10.1016/j.engstruct.2020.110414 es_ES
dc.description.references EN 1990. Eurocode: Basis of structural design; 2002. es_ES
dc.description.references Olmati, P., Sagaseta, J., Cormie, D., & Jones, A. E. K. (2017). Simplified reliability analysis of punching in reinforced concrete flat slab buildings under accidental actions. Engineering Structures, 130, 83-98. doi:10.1016/j.engstruct.2016.09.061 es_ES
dc.description.references Russell, J. M., Owen, J. S., & Hajirasouliha, I. (2015). Experimental investigation on the dynamic response of RC flat slabs after a sudden column loss. Engineering Structures, 99, 28-41. doi:10.1016/j.engstruct.2015.04.040 es_ES
dc.description.references EN 1996-1-1: Eurocode 6: Design of masonry structures – Part 1-1: General rules for reinforced and unreinforced masonry structures; 2005. es_ES
dc.description.references ASCE/SEI. Standard 41-06: Seismic rehabilitation of existing structures. In: ASCE 2007. Reston, Virginia, USA; 2007. es_ES
dc.description.references Masonry Standards Joint Committee (MSJC). Builiding code requirements and specification for masonry structures and related commentaries. Farmington Hills: American Concrete Institute; 1994. es_ES
dc.description.references The ministry of public works and settlements. Turkish Code for Buildings in Seismic Zones (TEC). Ankara, Turquía; 2007. es_ES
dc.description.references Paulay T, Pristley MJN. Seismic design of reinforced concrete and masonry buildings. New York: A Wiley Intersci Publ; 1992. es_ES
dc.description.references Abaqus. Release 6.14. Theory and user’s manuals. Pawtucket (RI, USA): Hibbit, Karlsson and Sorensen Inc.; 2014. es_ES
dc.description.references Ozkaynak, H., Yuksel, E., Yalcin, C., Dindar, A. A., & Buyukozturk, O. (2013). Masonry infill walls in reinforced concrete frames as a source of structural damping. Earthquake Engineering & Structural Dynamics, 43(7), 949-968. doi:10.1002/eqe.2380 es_ES
dc.subject.ods 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem