Mostrar el registro sencillo del ítem
dc.contributor.author | Ferri Azor, José Miguel | es_ES |
dc.contributor.author | Garcia-Garcia, Daniel | es_ES |
dc.contributor.author | Rayón Encinas, Emilio | es_ES |
dc.contributor.author | Samper, María-Dolores | es_ES |
dc.contributor.author | Balart, Rafael | es_ES |
dc.date.accessioned | 2021-03-05T04:32:07Z | |
dc.date.available | 2021-03-05T04:32:07Z | |
dc.date.issued | 2020-06 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/163181 | |
dc.description.abstract | [EN] In this study, different compatibilizing agents were used to analyze their influence on immiscible blends of polylactide (PLA) and biobased high-density polyethylene (bioPE) 80/20 (wt/wt). The compatibilizing agents used were polyethylene vinyl acetate (EVA) with a content of 33% of vinyl acetate, polyvinyl alcohol (PVA), and dicumyl peroxide (DPC). The influence of each compatibilizing agent on the mechanical, thermal, and microstructural properties of the PLA-bioPE blend was studied using different microscopic techniques (i.e., field emission electron microscopy (FESEM), transmission electron microscopy (TEM), and atomic force microscopy with PeakForce quantitative nanomechanical mapping (AFM-QNM)). Compatibilized PLA-bioPE blends showed an improvement in the ductile properties, with EVA being the compatibilizer that provided the highest elongation at break and the highest impact-absorbed energy (Charpy test). In addition, it was observed by means of the different microscopic techniques that the typical droplet-like structure is maintained, but the use of compatibilizers decreases the dimensions of the dispersed droplets, leading to improved interfacial adhesion, being more pronounced in the case of the EVA compatibilizer. Furthermore, the incorporation of the compatibilizers caused a very marked decrease in the crystallinity of the immiscible PLA-bioPE blend | es_ES |
dc.description.sponsorship | This research was funded by the Spanish Ministry of Science, Innovation, and Universities (MICIU), project numbers MAT2017-84909-C2-2-R. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Polymers | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Polylactide | es_ES |
dc.subject | Biopolymers | es_ES |
dc.subject | Blends | es_ES |
dc.subject | Compatibilizing agents | es_ES |
dc.subject | Microscopic techniques | es_ES |
dc.subject.classification | CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA | es_ES |
dc.title | Compatibilization and Characterization of Polylactide and Biopolyethylene Binary Blends by Non-Reactive and Reactive Compatibilization Approaches | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/polym12061344 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MAT2017-84909-C2-2-R/ES/PROCESADO Y OPTIMIZACION DE MATERIALES AVANZADOS DERIVADOS DE ESTRUCTURAS PROTEICAS Y COMPONENTES LIGNOCELULOSICOS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials | es_ES |
dc.description.bibliographicCitation | Ferri Azor, JM.; Garcia-Garcia, D.; Rayón Encinas, E.; Samper, M.; Balart, R. (2020). Compatibilization and Characterization of Polylactide and Biopolyethylene Binary Blends by Non-Reactive and Reactive Compatibilization Approaches. Polymers. 12(6):1-20. https://doi.org/10.3390/polym12061344 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/polym12061344 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 20 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 12 | es_ES |
dc.description.issue | 6 | es_ES |
dc.identifier.eissn | 2073-4360 | es_ES |
dc.relation.pasarela | S\413893 | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.description.references | Nofar, M., Sacligil, D., Carreau, P. J., Kamal, M. R., & Heuzey, M.-C. (2019). Poly (lactic acid) blends: Processing, properties and applications. International Journal of Biological Macromolecules, 125, 307-360. doi:10.1016/j.ijbiomac.2018.12.002 | es_ES |
dc.description.references | Farto-Vaamonde, X., Auriemma, G., Aquino, R. P., Concheiro, A., & Alvarez-Lorenzo, C. (2019). Post-manufacture loading of filaments and 3D printed PLA scaffolds with prednisolone and dexamethasone for tissue regeneration applications. European Journal of Pharmaceutics and Biopharmaceutics, 141, 100-110. doi:10.1016/j.ejpb.2019.05.018 | es_ES |
dc.description.references | Fajardo, J., Valarezo, L., López, L., & Sarmiento, A. (2013). Experiencies in obtaining polymeric composites reinforced with natural fiber from Ecuador. Ingenius, (9). doi:10.17163/ings.n9.2013.04 | es_ES |
dc.description.references | Ferri, J. M., Garcia-Garcia, D., Carbonell-Verdu, A., Fenollar, O., & Balart, R. (2017). Poly(lactic acid) formulations with improved toughness by physical blending with thermoplastic starch. Journal of Applied Polymer Science, 135(4), 45751. doi:10.1002/app.45751 | es_ES |
dc.description.references | Ferri, J. M., Garcia-Garcia, D., Sánchez-Nacher, L., Fenollar, O., & Balart, R. (2016). The effect of maleinized linseed oil (MLO) on mechanical performance of poly(lactic acid)-thermoplastic starch (PLA-TPS) blends. Carbohydrate Polymers, 147, 60-68. doi:10.1016/j.carbpol.2016.03.082 | es_ES |
dc.description.references | Gao, H., Hu, S., Su, F., Zhang, J., & Tang, G. (2011). Mechanical, thermal, and biodegradability properties of PLA/modified starch blends. Polymer Composites, 32(12), 2093-2100. doi:10.1002/pc.21241 | es_ES |
dc.description.references | Arrieta, M. P., López, J., Ferrándiz, S., & Peltzer, M. A. (2013). Characterization of PLA-limonene blends for food packaging applications. Polymer Testing, 32(4), 760-768. doi:10.1016/j.polymertesting.2013.03.016 | es_ES |
dc.description.references | Arrieta, M. P., López, J., Hernández, A., & Rayón, E. (2014). Ternary PLA–PHB–Limonene blends intended for biodegradable food packaging applications. European Polymer Journal, 50, 255-270. doi:10.1016/j.eurpolymj.2013.11.009 | es_ES |
dc.description.references | Iglesias Montes, M. L., Cyras, V. P., Manfredi, L. B., Pettarín, V., & Fasce, L. A. (2020). Fracture evaluation of plasticized polylactic acid / poly (3-HYDROXYBUTYRATE) blends for commodities replacement in packaging applications. Polymer Testing, 84, 106375. doi:10.1016/j.polymertesting.2020.106375 | es_ES |
dc.description.references | Ferri, J. M., Fenollar, O., Jorda-Vilaplana, A., García-Sanoguera, D., & Balart, R. (2016). Effect of miscibility on mechanical and thermal properties of poly(lactic acid)/ polycaprolactone blends. Polymer International, 65(4), 453-463. doi:10.1002/pi.5079 | es_ES |
dc.description.references | Mittal, V., Akhtar, T., & Matsko, N. (2015). Mechanical, Thermal, Rheological and Morphological Properties of Binary and Ternary Blends of PLA, TPS and PCL. Macromolecular Materials and Engineering, 300(4), 423-435. doi:10.1002/mame.201400332 | es_ES |
dc.description.references | Umamaheswara Rao, R., Venkatanarayana, B., & Suman, K. N. . (2019). Enhancement of Mechanical Properties of PLA/PCL (80/20) Blend by Reinforcing with MMT Nanoclay. Materials Today: Proceedings, 18, 85-97. doi:10.1016/j.matpr.2019.06.280 | es_ES |
dc.description.references | Carbonell-Verdu, A., Ferri, J. M., Dominici, F., Boronat, T., Sanchez-Nacher, L., Balart, R., & Torre, L. (2018). Manufacturing and compatibilization of PLA/PBAT binary blends by cottonseed oil-based derivatives. Express Polymer Letters, 12(9), 808-823. doi:10.3144/expresspolymlett.2018.69 | es_ES |
dc.description.references | Wang, X., Peng, S., Chen, H., Yu, X., & Zhao, X. (2019). Mechanical properties, rheological behaviors, and phase morphologies of high-toughness PLA/PBAT blends by in-situ reactive compatibilization. Composites Part B: Engineering, 173, 107028. doi:10.1016/j.compositesb.2019.107028 | es_ES |
dc.description.references | Kilic, N. T., Can, B. N., Kodal, M., & Ozkoc, G. (2018). Compatibilization of PLA/PBAT blends by using Epoxy-POSS. Journal of Applied Polymer Science, 136(12), 47217. doi:10.1002/app.47217 | es_ES |
dc.description.references | Gere, D., & Czigany, T. (2020). Future trends of plastic bottle recycling: Compatibilization of PET and PLA. Polymer Testing, 81, 106160. doi:10.1016/j.polymertesting.2019.106160 | es_ES |
dc.description.references | Palma-Ramírez, D., Torres-Huerta, A. M., Domínguez-Crespo, M. A., Del Angel-López, D., Flores-Vela, A. I., & de la Fuente, D. (2019). Data supporting the morphological/topographical properties and the degradability on PET/PLA and PET/chitosan blends. Data in Brief, 25, 104012. doi:10.1016/j.dib.2019.104012 | es_ES |
dc.description.references | Hachemi, R., Belhaneche-Bensemra, N., & Massardier, V. (2013). Elaboration and characterization of bioblends based on PVC/PLA. Journal of Applied Polymer Science, 131(7), n/a-n/a. doi:10.1002/app.40045 | es_ES |
dc.description.references | Nehra, R., Maiti, S. N., & Jacob, J. (2017). Analytical interpretations of static and dynamic mechanical properties of thermoplastic elastomer toughened PLA blends. Journal of Applied Polymer Science, 135(1), 45644. doi:10.1002/app.45644 | es_ES |
dc.description.references | Jašo, V., Cvetinov, M., Rakić, S., & Petrović, Z. S. (2014). Bio-plastics and elastomers from polylactic acid/thermoplastic polyurethane blends. Journal of Applied Polymer Science, 131(22), n/a-n/a. doi:10.1002/app.41104 | es_ES |
dc.description.references | Mandal, D. K., Bhunia, H., & Bajpai, P. K. (2018). Thermal degradation kinetics of PP/PLA nanocomposite blends. Journal of Thermoplastic Composite Materials, 32(12), 1714-1730. doi:10.1177/0892705718805130 | es_ES |
dc.description.references | Azizi, S., Azizi, M., & Sabetzadeh, M. (2019). The Role of Multiwalled Carbon Nanotubes in the Mechanical, Thermal, Rheological, and Electrical Properties of PP/PLA/MWCNTs Nanocomposites. Journal of Composites Science, 3(3), 64. doi:10.3390/jcs3030064 | es_ES |
dc.description.references | Quiles-Carrillo, L., Montanes, N., Jorda-Vilaplana, A., Balart, R., & Torres-Giner, S. (2018). A comparative study on the effect of different reactive compatibilizers on injection-molded pieces of bio-based high-density polyethylene/polylactide blends. Journal of Applied Polymer Science, 136(16), 47396. doi:10.1002/app.47396 | es_ES |
dc.description.references | Boubekeur, B., Belhaneche‐Bensemra, N., & Massardier, V. (2020). Low‐Density Polyethylene/Poly(Lactic Acid) Blends Reinforced by Waste Wood Flour. Journal of Vinyl and Additive Technology, 26(4), 443-451. doi:10.1002/vnl.21759 | es_ES |
dc.description.references | Torres Huerta, A. M. (2019). PREPARATION AND DEGRADATION STUDY OF HDPE/PLA POLYMER BLENDS FOR PACKAGING APPLICATIONS. Revista Mexicana de Ingeniería Química, 18(1), 251-271. doi:10.24275/uam/izt/dcbi/revmexingquim/2019v18n1/torres | es_ES |
dc.description.references | Dolores, S. M., Marina Patricia, A., Santiago, F., & Juan, L. (2014). Influence of biodegradable materials in the recycled polystyrene. Journal of Applied Polymer Science, 131(23), n/a-n/a. doi:10.1002/app.41161 | es_ES |
dc.description.references | Samper, M., Bertomeu, D., Arrieta, M., Ferri, J., & López-Martínez, J. (2018). Interference of Biodegradable Plastics in the Polypropylene Recycling Process. Materials, 11(10), 1886. doi:10.3390/ma11101886 | es_ES |
dc.description.references | Hermes, H. E., Higgins, J. S., & Bucknall, D. G. (1997). Investigation of the melt interface between polyethylene and polystyrene using neutron reflectivity. Polymer, 38(4), 985-989. doi:10.1016/s0032-3861(96)00719-7 | es_ES |
dc.description.references | Wang, Y., & Hillmyer, M. A. (2001). Polyethylene-poly(L-lactide) diblock copolymers: Synthesis and compatibilization of poly(L-lactide)/polyethylene blends. Journal of Polymer Science Part A: Polymer Chemistry, 39(16), 2755-2766. doi:10.1002/pola.1254 | es_ES |
dc.description.references | Anderson, K. S., & Hillmyer, M. A. (2004). The influence of block copolymer microstructure on the toughness of compatibilized polylactide/polyethylene blends. Polymer, 45(26), 8809-8823. doi:10.1016/j.polymer.2004.10.047 | es_ES |
dc.description.references | Singh, G., Bhunia, H., Rajor, A., & Choudhary, V. (2010). Thermal properties and degradation characteristics of polylactide, linear low density polyethylene, and their blends. Polymer Bulletin, 66(7), 939-953. doi:10.1007/s00289-010-0367-x | es_ES |
dc.description.references | Djellali, S., Haddaoui, N., Sadoun, T., Bergeret, A., & Grohens, Y. (2013). Structural, morphological and mechanical characteristics of polyethylene, poly(lactic acid) and poly(ethylene-co-glycidyl methacrylate) blends. Iranian Polymer Journal, 22(4), 245-257. doi:10.1007/s13726-013-0126-6 | es_ES |
dc.description.references | Brito, G. F., Agrawal, P., & Mélo, T. J. A. (2016). Mechanical and Morphological Properties of PLA/BioPE Blend Compatibilized with E-GMA and EMA-GMA Copolymers. Macromolecular Symposia, 367(1), 176-182. doi:10.1002/masy.201500158 | es_ES |
dc.description.references | Zolali, A. M., & Favis, B. D. (2018). Toughening of Cocontinuous Polylactide/Polyethylene Blends via an Interfacially Percolated Intermediate Phase. Macromolecules, 51(10), 3572-3581. doi:10.1021/acs.macromol.8b00464 | es_ES |
dc.description.references | Xu, Y., Loi, J., Delgado, P., Topolkaraev, V., McEneany, R. J., Macosko, C. W., & Hillmyer, M. A. (2015). Reactive Compatibilization of Polylactide/Polypropylene Blends. Industrial & Engineering Chemistry Research, 54(23), 6108-6114. doi:10.1021/acs.iecr.5b00882 | es_ES |
dc.description.references | Quiles-Carrillo, L., Fenollar, O., Balart, R., Torres-Giner, S., Rallini, M., Dominici, F., & Torre, L. (2020). A comparative study on the reactive compatibilization of melt-processed polyamide 1010/polylactide blends by multi-functionalized additives derived from linseed oil and petroleum. Express Polymer Letters, 14(6), 583-604. doi:10.3144/expresspolymlett.2020.48 | es_ES |
dc.description.references | Detyothin, S., Selke, S. E. M., Narayan, R., Rubino, M., & Auras, R. A. (2015). Effects of molecular weight and grafted maleic anhydride of functionalized polylactic acid used in reactive compatibilized binary and ternary blends of polylactic acid and thermoplastic cassava starch. Journal of Applied Polymer Science, 132(28), n/a-n/a. doi:10.1002/app.42230 | es_ES |
dc.description.references | Semba, T., Kitagawa, K., Ishiaku, U. S., Kotaki, M., & Hamada, H. (2006). Effect of compounding procedure on mechanical properties and dispersed phase morphology of poly(lactic acid)/polycaprolactone blends containing peroxide. Journal of Applied Polymer Science, 103(2), 1066-1074. doi:10.1002/app.25311 | es_ES |
dc.description.references | Srimalanon, P., Prapagdee, B., Markpin, T., & Sombatsompop, N. (2018). Effects of DCP as a free radical producer and HPQM as a biocide on the mechanical properties and antibacterial performance of in situ compatibilized PBS/PLA blends. Polymer Testing, 67, 331-341. doi:10.1016/j.polymertesting.2018.03.017 | es_ES |
dc.description.references | Wang, N., Yu, J., & Ma, X. (2007). Preparation and characterization of thermoplastic starch/PLA blends by one-step reactive extrusion. Polymer International, 56(11), 1440-1447. doi:10.1002/pi.2302 | es_ES |
dc.description.references | Ferri, J. M., Samper, M. D., García-Sanoguera, D., Reig, M. J., Fenollar, O., & Balart, R. (2016). Plasticizing effect of biobased epoxidized fatty acid esters on mechanical and thermal properties of poly(lactic acid). Journal of Materials Science, 51(11), 5356-5366. doi:10.1007/s10853-016-9838-2 | es_ES |
dc.description.references | Arrieta, M. P., Samper, M. D., López, J., & Jiménez, A. (2014). Combined Effect of Poly(hydroxybutyrate) and Plasticizers on Polylactic acid Properties for Film Intended for Food Packaging. Journal of Polymers and the Environment, 22(4), 460-470. doi:10.1007/s10924-014-0654-y | es_ES |
dc.description.references | Butt, H.-J., Cappella, B., & Kappl, M. (2005). Force measurements with the atomic force microscope: Technique, interpretation and applications. Surface Science Reports, 59(1-6), 1-152. doi:10.1016/j.surfrep.2005.08.003 | es_ES |
dc.description.references | Frybort, S., Obersriebnig, M., Müller, U., Gindl-Altmutter, W., & Konnerth, J. (2014). Variability in surface polarity of wood by means of AFM adhesion force mapping. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 457, 82-87. doi:10.1016/j.colsurfa.2014.05.055 | es_ES |
dc.description.references | Derjaguin, B. V., Muller, V. M., & Toporov, Y. P. (1994). Effect of contact deformations on the adhesion of particles. Progress in Surface Science, 45(1-4), 131-143. doi:10.1016/0079-6816(94)90044-2 | es_ES |
dc.description.references | Garcia-Garcia, D., Carbonell-Verdu, A., Jordá-Vilaplana, A., Balart, R., & Garcia-Sanoguera, D. (2016). Development and characterization of green composites from bio-based polyethylene and peanut shell. Journal of Applied Polymer Science, 133(37). doi:10.1002/app.43940 | es_ES |
dc.description.references | Li, Z.-M., Yang, W., Xie, B.-H., Yang, S. ., Yang, M.-B., Feng, J.-M., & Huang, R. (2003). Effects of compatibilization on the essential work of fracture parameters of in situ microfiber reinforced poly(ethylene terephtahalate)/polyethylene blend. Materials Research Bulletin, 38(14), 1867-1878. doi:10.1016/j.materresbull.2003.07.007 | es_ES |
dc.description.references | Ma, P., Hristova-Bogaerds, D. G., Goossens, J. G. P., Spoelstra, A. B., Zhang, Y., & Lemstra, P. J. (2012). Toughening of poly(lactic acid) by ethylene-co-vinyl acetate copolymer with different vinyl acetate contents. European Polymer Journal, 48(1), 146-154. doi:10.1016/j.eurpolymj.2011.10.015 | es_ES |
dc.description.references | Garcia-Garcia, D., Rayón, E., Carbonell-Verdu, A., Lopez-Martinez, J., & Balart, R. (2017). Improvement of the compatibility between poly(3-hydroxybutyrate) and poly(ε-caprolactone) by reactive extrusion with dicumyl peroxide. European Polymer Journal, 86, 41-57. doi:10.1016/j.eurpolymj.2016.11.018 | es_ES |
dc.description.references | Zhou, Y., Wang, J., Cai, S.-Y., Wang, Z.-G., Zhang, N.-W., & Ren, J. (2018). Effect of POE-g-GMA on mechanical, rheological and thermal properties of poly(lactic acid)/poly(propylene carbonate) blends. Polymer Bulletin, 75(12), 5437-5454. doi:10.1007/s00289-018-2339-5 | es_ES |
dc.description.references | Sewda, K., & Maiti, S. N. (2013). Dynamic mechanical properties of high density polyethylene and teak wood flour composites. Polymer Bulletin, 70(10), 2657-2674. doi:10.1007/s00289-013-0941-0 | es_ES |
dc.description.references | Gao, J., Bai, H., Zhang, Q., Gao, Y., Chen, L., & Fu, Q. (2012). Effect of homopolymer poly(vinyl acetate) on compatibility and mechanical properties of poly(propylene carbonate)/poly(lactic acid) blends. Express Polymer Letters, 6(11), 860-870. doi:10.3144/expresspolymlett.2012.92 | es_ES |
dc.description.references | Ma, X., Yu, J., & Wang, N. (2005). Compatibility characterization of poly(lactic acid)/poly(propylene carbonate) blends. Journal of Polymer Science Part B: Polymer Physics, 44(1), 94-101. doi:10.1002/polb.20669 | es_ES |
dc.description.references | Lu, X., Tang, L., Wang, L., Zhao, J., Li, D., Wu, Z., & Xiao, P. (2016). Morphology and properties of bio-based poly (lactic acid)/high-density polyethylene blends and their glass fiber reinforced composites. Polymer Testing, 54, 90-97. doi:10.1016/j.polymertesting.2016.06.025 | es_ES |
dc.description.references | Zhao, M., Ding, X., Mi, J., Zhou, H., & Wang, X. (2017). Role of high-density polyethylene in the crystallization behaviors, rheological property, and supercritical CO2 foaming of poly (lactic acid). Polymer Degradation and Stability, 146, 277-286. doi:10.1016/j.polymdegradstab.2017.11.003 | es_ES |
dc.description.references | Quitadamo, A., Massardier, V., Santulli, C., & Valente, M. (2018). Optimization of Thermoplastic Blend Matrix HDPE/PLA with Different Types and Levels of Coupling Agents. Materials, 11(12), 2527. doi:10.3390/ma11122527 | es_ES |
dc.description.references | Gallego, R., López-Quintana, S., Basurto, F., Núñez, K., Villarreal, N., & Merino, J. C. (2013). Synthesis of new compatibilizers to poly(lactic acid) blends. Polymer Engineering & Science, 54(3), 522-530. doi:10.1002/pen.23589 | es_ES |
dc.description.references | Lovinčić Milovanović, V., Hajdinjak, I., Lovriša, I., & Vrsaljko, D. (2019). The influence of the dispersed phase on the morphology, mechanical and thermal properties of PLA/PE‐LD and PLA/PE‐HD polymer blends and their nanocomposites with TiO 2 and CaCO 3. Polymer Engineering & Science, 59(7), 1395-1408. doi:10.1002/pen.25124 | es_ES |
dc.description.references | Ji, D., Liu, Z., Lan, X., Wu, F., Xie, B., & Yang, M. (2013). Morphology, rheology, crystallization behavior, and mechanical properties of poly(lactic acid)/poly(butylene succinate)/dicumyl peroxide reactive blends. Journal of Applied Polymer Science, 131(3), n/a-n/a. doi:10.1002/app.39580 | es_ES |
dc.description.references | Vrsaljko, D., Macut, D., & Kovačević, V. (2014). Potential role of nanofillers as compatibilizers in immiscible PLA/LDPE Blends. Journal of Applied Polymer Science, 132(6), n/a-n/a. doi:10.1002/app.41414 | es_ES |
dc.subject.ods | 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación | es_ES |
dc.subject.ods | 12.- Garantizar las pautas de consumo y de producción sostenibles | es_ES |