- -

Compatibilization and Characterization of Polylactide and Biopolyethylene Binary Blends by Non-Reactive and Reactive Compatibilization Approaches

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Compatibilization and Characterization of Polylactide and Biopolyethylene Binary Blends by Non-Reactive and Reactive Compatibilization Approaches

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ferri Azor, José Miguel es_ES
dc.contributor.author Garcia-Garcia, Daniel es_ES
dc.contributor.author Rayón Encinas, Emilio es_ES
dc.contributor.author Samper, María-Dolores es_ES
dc.contributor.author Balart, Rafael es_ES
dc.date.accessioned 2021-03-05T04:32:07Z
dc.date.available 2021-03-05T04:32:07Z
dc.date.issued 2020-06 es_ES
dc.identifier.uri http://hdl.handle.net/10251/163181
dc.description.abstract [EN] In this study, different compatibilizing agents were used to analyze their influence on immiscible blends of polylactide (PLA) and biobased high-density polyethylene (bioPE) 80/20 (wt/wt). The compatibilizing agents used were polyethylene vinyl acetate (EVA) with a content of 33% of vinyl acetate, polyvinyl alcohol (PVA), and dicumyl peroxide (DPC). The influence of each compatibilizing agent on the mechanical, thermal, and microstructural properties of the PLA-bioPE blend was studied using different microscopic techniques (i.e., field emission electron microscopy (FESEM), transmission electron microscopy (TEM), and atomic force microscopy with PeakForce quantitative nanomechanical mapping (AFM-QNM)). Compatibilized PLA-bioPE blends showed an improvement in the ductile properties, with EVA being the compatibilizer that provided the highest elongation at break and the highest impact-absorbed energy (Charpy test). In addition, it was observed by means of the different microscopic techniques that the typical droplet-like structure is maintained, but the use of compatibilizers decreases the dimensions of the dispersed droplets, leading to improved interfacial adhesion, being more pronounced in the case of the EVA compatibilizer. Furthermore, the incorporation of the compatibilizers caused a very marked decrease in the crystallinity of the immiscible PLA-bioPE blend es_ES
dc.description.sponsorship This research was funded by the Spanish Ministry of Science, Innovation, and Universities (MICIU), project numbers MAT2017-84909-C2-2-R. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Polymers es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Polylactide es_ES
dc.subject Biopolymers es_ES
dc.subject Blends es_ES
dc.subject Compatibilizing agents es_ES
dc.subject Microscopic techniques es_ES
dc.subject.classification CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA es_ES
dc.title Compatibilization and Characterization of Polylactide and Biopolyethylene Binary Blends by Non-Reactive and Reactive Compatibilization Approaches es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/polym12061344 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MAT2017-84909-C2-2-R/ES/PROCESADO Y OPTIMIZACION DE MATERIALES AVANZADOS DERIVADOS DE ESTRUCTURAS PROTEICAS Y COMPONENTES LIGNOCELULOSICOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials es_ES
dc.description.bibliographicCitation Ferri Azor, JM.; Garcia-Garcia, D.; Rayón Encinas, E.; Samper, M.; Balart, R. (2020). Compatibilization and Characterization of Polylactide and Biopolyethylene Binary Blends by Non-Reactive and Reactive Compatibilization Approaches. Polymers. 12(6):1-20. https://doi.org/10.3390/polym12061344 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/polym12061344 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 20 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 12 es_ES
dc.description.issue 6 es_ES
dc.identifier.eissn 2073-4360 es_ES
dc.relation.pasarela S\413893 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Nofar, M., Sacligil, D., Carreau, P. J., Kamal, M. R., & Heuzey, M.-C. (2019). Poly (lactic acid) blends: Processing, properties and applications. International Journal of Biological Macromolecules, 125, 307-360. doi:10.1016/j.ijbiomac.2018.12.002 es_ES
dc.description.references Farto-Vaamonde, X., Auriemma, G., Aquino, R. P., Concheiro, A., & Alvarez-Lorenzo, C. (2019). Post-manufacture loading of filaments and 3D printed PLA scaffolds with prednisolone and dexamethasone for tissue regeneration applications. European Journal of Pharmaceutics and Biopharmaceutics, 141, 100-110. doi:10.1016/j.ejpb.2019.05.018 es_ES
dc.description.references Fajardo, J., Valarezo, L., López, L., & Sarmiento, A. (2013). Experiencies in obtaining polymeric composites reinforced with natural fiber from Ecuador. Ingenius, (9). doi:10.17163/ings.n9.2013.04 es_ES
dc.description.references Ferri, J. M., Garcia-Garcia, D., Carbonell-Verdu, A., Fenollar, O., & Balart, R. (2017). Poly(lactic acid) formulations with improved toughness by physical blending with thermoplastic starch. Journal of Applied Polymer Science, 135(4), 45751. doi:10.1002/app.45751 es_ES
dc.description.references Ferri, J. M., Garcia-Garcia, D., Sánchez-Nacher, L., Fenollar, O., & Balart, R. (2016). The effect of maleinized linseed oil (MLO) on mechanical performance of poly(lactic acid)-thermoplastic starch (PLA-TPS) blends. Carbohydrate Polymers, 147, 60-68. doi:10.1016/j.carbpol.2016.03.082 es_ES
dc.description.references Gao, H., Hu, S., Su, F., Zhang, J., & Tang, G. (2011). Mechanical, thermal, and biodegradability properties of PLA/modified starch blends. Polymer Composites, 32(12), 2093-2100. doi:10.1002/pc.21241 es_ES
dc.description.references Arrieta, M. P., López, J., Ferrándiz, S., & Peltzer, M. A. (2013). Characterization of PLA-limonene blends for food packaging applications. Polymer Testing, 32(4), 760-768. doi:10.1016/j.polymertesting.2013.03.016 es_ES
dc.description.references Arrieta, M. P., López, J., Hernández, A., & Rayón, E. (2014). Ternary PLA–PHB–Limonene blends intended for biodegradable food packaging applications. European Polymer Journal, 50, 255-270. doi:10.1016/j.eurpolymj.2013.11.009 es_ES
dc.description.references Iglesias Montes, M. L., Cyras, V. P., Manfredi, L. B., Pettarín, V., & Fasce, L. A. (2020). Fracture evaluation of plasticized polylactic acid / poly (3-HYDROXYBUTYRATE) blends for commodities replacement in packaging applications. Polymer Testing, 84, 106375. doi:10.1016/j.polymertesting.2020.106375 es_ES
dc.description.references Ferri, J. M., Fenollar, O., Jorda-Vilaplana, A., García-Sanoguera, D., & Balart, R. (2016). Effect of miscibility on mechanical and thermal properties of poly(lactic acid)/ polycaprolactone blends. Polymer International, 65(4), 453-463. doi:10.1002/pi.5079 es_ES
dc.description.references Mittal, V., Akhtar, T., & Matsko, N. (2015). Mechanical, Thermal, Rheological and Morphological Properties of Binary and Ternary Blends of PLA, TPS and PCL. Macromolecular Materials and Engineering, 300(4), 423-435. doi:10.1002/mame.201400332 es_ES
dc.description.references Umamaheswara Rao, R., Venkatanarayana, B., & Suman, K. N. . (2019). Enhancement of Mechanical Properties of PLA/PCL (80/20) Blend by Reinforcing with MMT Nanoclay. Materials Today: Proceedings, 18, 85-97. doi:10.1016/j.matpr.2019.06.280 es_ES
dc.description.references Carbonell-Verdu, A., Ferri, J. M., Dominici, F., Boronat, T., Sanchez-Nacher, L., Balart, R., & Torre, L. (2018). Manufacturing and compatibilization of PLA/PBAT binary blends by cottonseed oil-based derivatives. Express Polymer Letters, 12(9), 808-823. doi:10.3144/expresspolymlett.2018.69 es_ES
dc.description.references Wang, X., Peng, S., Chen, H., Yu, X., & Zhao, X. (2019). Mechanical properties, rheological behaviors, and phase morphologies of high-toughness PLA/PBAT blends by in-situ reactive compatibilization. Composites Part B: Engineering, 173, 107028. doi:10.1016/j.compositesb.2019.107028 es_ES
dc.description.references Kilic, N. T., Can, B. N., Kodal, M., & Ozkoc, G. (2018). Compatibilization of PLA/PBAT blends by using Epoxy-POSS. Journal of Applied Polymer Science, 136(12), 47217. doi:10.1002/app.47217 es_ES
dc.description.references Gere, D., & Czigany, T. (2020). Future trends of plastic bottle recycling: Compatibilization of PET and PLA. Polymer Testing, 81, 106160. doi:10.1016/j.polymertesting.2019.106160 es_ES
dc.description.references Palma-Ramírez, D., Torres-Huerta, A. M., Domínguez-Crespo, M. A., Del Angel-López, D., Flores-Vela, A. I., & de la Fuente, D. (2019). Data supporting the morphological/topographical properties and the degradability on PET/PLA and PET/chitosan blends. Data in Brief, 25, 104012. doi:10.1016/j.dib.2019.104012 es_ES
dc.description.references Hachemi, R., Belhaneche-Bensemra, N., & Massardier, V. (2013). Elaboration and characterization of bioblends based on PVC/PLA. Journal of Applied Polymer Science, 131(7), n/a-n/a. doi:10.1002/app.40045 es_ES
dc.description.references Nehra, R., Maiti, S. N., & Jacob, J. (2017). Analytical interpretations of static and dynamic mechanical properties of thermoplastic elastomer toughened PLA blends. Journal of Applied Polymer Science, 135(1), 45644. doi:10.1002/app.45644 es_ES
dc.description.references Jašo, V., Cvetinov, M., Rakić, S., & Petrović, Z. S. (2014). Bio-plastics and elastomers from polylactic acid/thermoplastic polyurethane blends. Journal of Applied Polymer Science, 131(22), n/a-n/a. doi:10.1002/app.41104 es_ES
dc.description.references Mandal, D. K., Bhunia, H., & Bajpai, P. K. (2018). Thermal degradation kinetics of PP/PLA nanocomposite blends. Journal of Thermoplastic Composite Materials, 32(12), 1714-1730. doi:10.1177/0892705718805130 es_ES
dc.description.references Azizi, S., Azizi, M., & Sabetzadeh, M. (2019). The Role of Multiwalled Carbon Nanotubes in the Mechanical, Thermal, Rheological, and Electrical Properties of PP/PLA/MWCNTs Nanocomposites. Journal of Composites Science, 3(3), 64. doi:10.3390/jcs3030064 es_ES
dc.description.references Quiles-Carrillo, L., Montanes, N., Jorda-Vilaplana, A., Balart, R., & Torres-Giner, S. (2018). A comparative study on the effect of different reactive compatibilizers on injection-molded pieces of bio-based high-density polyethylene/polylactide blends. Journal of Applied Polymer Science, 136(16), 47396. doi:10.1002/app.47396 es_ES
dc.description.references Boubekeur, B., Belhaneche‐Bensemra, N., & Massardier, V. (2020). Low‐Density Polyethylene/Poly(Lactic Acid) Blends Reinforced by Waste Wood Flour. Journal of Vinyl and Additive Technology, 26(4), 443-451. doi:10.1002/vnl.21759 es_ES
dc.description.references Torres Huerta, A. M. (2019). PREPARATION AND DEGRADATION STUDY OF HDPE/PLA POLYMER BLENDS FOR PACKAGING APPLICATIONS. Revista Mexicana de Ingeniería Química, 18(1), 251-271. doi:10.24275/uam/izt/dcbi/revmexingquim/2019v18n1/torres es_ES
dc.description.references Dolores, S. M., Marina Patricia, A., Santiago, F., & Juan, L. (2014). Influence of biodegradable materials in the recycled polystyrene. Journal of Applied Polymer Science, 131(23), n/a-n/a. doi:10.1002/app.41161 es_ES
dc.description.references Samper, M., Bertomeu, D., Arrieta, M., Ferri, J., & López-Martínez, J. (2018). Interference of Biodegradable Plastics in the Polypropylene Recycling Process. Materials, 11(10), 1886. doi:10.3390/ma11101886 es_ES
dc.description.references Hermes, H. E., Higgins, J. S., & Bucknall, D. G. (1997). Investigation of the melt interface between polyethylene and polystyrene using neutron reflectivity. Polymer, 38(4), 985-989. doi:10.1016/s0032-3861(96)00719-7 es_ES
dc.description.references Wang, Y., & Hillmyer, M. A. (2001). Polyethylene-poly(L-lactide) diblock copolymers: Synthesis and compatibilization of poly(L-lactide)/polyethylene blends. Journal of Polymer Science Part A: Polymer Chemistry, 39(16), 2755-2766. doi:10.1002/pola.1254 es_ES
dc.description.references Anderson, K. S., & Hillmyer, M. A. (2004). The influence of block copolymer microstructure on the toughness of compatibilized polylactide/polyethylene blends. Polymer, 45(26), 8809-8823. doi:10.1016/j.polymer.2004.10.047 es_ES
dc.description.references Singh, G., Bhunia, H., Rajor, A., & Choudhary, V. (2010). Thermal properties and degradation characteristics of polylactide, linear low density polyethylene, and their blends. Polymer Bulletin, 66(7), 939-953. doi:10.1007/s00289-010-0367-x es_ES
dc.description.references Djellali, S., Haddaoui, N., Sadoun, T., Bergeret, A., & Grohens, Y. (2013). Structural, morphological and mechanical characteristics of polyethylene, poly(lactic acid) and poly(ethylene-co-glycidyl methacrylate) blends. Iranian Polymer Journal, 22(4), 245-257. doi:10.1007/s13726-013-0126-6 es_ES
dc.description.references Brito, G. F., Agrawal, P., & Mélo, T. J. A. (2016). Mechanical and Morphological Properties of PLA/BioPE Blend Compatibilized with E-GMA and EMA-GMA Copolymers. Macromolecular Symposia, 367(1), 176-182. doi:10.1002/masy.201500158 es_ES
dc.description.references Zolali, A. M., & Favis, B. D. (2018). Toughening of Cocontinuous Polylactide/Polyethylene Blends via an Interfacially Percolated Intermediate Phase. Macromolecules, 51(10), 3572-3581. doi:10.1021/acs.macromol.8b00464 es_ES
dc.description.references Xu, Y., Loi, J., Delgado, P., Topolkaraev, V., McEneany, R. J., Macosko, C. W., & Hillmyer, M. A. (2015). Reactive Compatibilization of Polylactide/Polypropylene Blends. Industrial & Engineering Chemistry Research, 54(23), 6108-6114. doi:10.1021/acs.iecr.5b00882 es_ES
dc.description.references Quiles-Carrillo, L., Fenollar, O., Balart, R., Torres-Giner, S., Rallini, M., Dominici, F., & Torre, L. (2020). A comparative study on the reactive compatibilization of melt-processed polyamide 1010/polylactide blends by multi-functionalized additives derived from linseed oil and petroleum. Express Polymer Letters, 14(6), 583-604. doi:10.3144/expresspolymlett.2020.48 es_ES
dc.description.references Detyothin, S., Selke, S. E. M., Narayan, R., Rubino, M., & Auras, R. A. (2015). Effects of molecular weight and grafted maleic anhydride of functionalized polylactic acid used in reactive compatibilized binary and ternary blends of polylactic acid and thermoplastic cassava starch. Journal of Applied Polymer Science, 132(28), n/a-n/a. doi:10.1002/app.42230 es_ES
dc.description.references Semba, T., Kitagawa, K., Ishiaku, U. S., Kotaki, M., & Hamada, H. (2006). Effect of compounding procedure on mechanical properties and dispersed phase morphology of poly(lactic acid)/polycaprolactone blends containing peroxide. Journal of Applied Polymer Science, 103(2), 1066-1074. doi:10.1002/app.25311 es_ES
dc.description.references Srimalanon, P., Prapagdee, B., Markpin, T., & Sombatsompop, N. (2018). Effects of DCP as a free radical producer and HPQM as a biocide on the mechanical properties and antibacterial performance of in situ compatibilized PBS/PLA blends. Polymer Testing, 67, 331-341. doi:10.1016/j.polymertesting.2018.03.017 es_ES
dc.description.references Wang, N., Yu, J., & Ma, X. (2007). Preparation and characterization of thermoplastic starch/PLA blends by one-step reactive extrusion. Polymer International, 56(11), 1440-1447. doi:10.1002/pi.2302 es_ES
dc.description.references Ferri, J. M., Samper, M. D., García-Sanoguera, D., Reig, M. J., Fenollar, O., & Balart, R. (2016). Plasticizing effect of biobased epoxidized fatty acid esters on mechanical and thermal properties of poly(lactic acid). Journal of Materials Science, 51(11), 5356-5366. doi:10.1007/s10853-016-9838-2 es_ES
dc.description.references Arrieta, M. P., Samper, M. D., López, J., & Jiménez, A. (2014). Combined Effect of Poly(hydroxybutyrate) and Plasticizers on Polylactic acid Properties for Film Intended for Food Packaging. Journal of Polymers and the Environment, 22(4), 460-470. doi:10.1007/s10924-014-0654-y es_ES
dc.description.references Butt, H.-J., Cappella, B., & Kappl, M. (2005). Force measurements with the atomic force microscope: Technique, interpretation and applications. Surface Science Reports, 59(1-6), 1-152. doi:10.1016/j.surfrep.2005.08.003 es_ES
dc.description.references Frybort, S., Obersriebnig, M., Müller, U., Gindl-Altmutter, W., & Konnerth, J. (2014). Variability in surface polarity of wood by means of AFM adhesion force mapping. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 457, 82-87. doi:10.1016/j.colsurfa.2014.05.055 es_ES
dc.description.references Derjaguin, B. V., Muller, V. M., & Toporov, Y. P. (1994). Effect of contact deformations on the adhesion of particles. Progress in Surface Science, 45(1-4), 131-143. doi:10.1016/0079-6816(94)90044-2 es_ES
dc.description.references Garcia-Garcia, D., Carbonell-Verdu, A., Jordá-Vilaplana, A., Balart, R., & Garcia-Sanoguera, D. (2016). Development and characterization of green composites from bio-based polyethylene and peanut shell. Journal of Applied Polymer Science, 133(37). doi:10.1002/app.43940 es_ES
dc.description.references Li, Z.-M., Yang, W., Xie, B.-H., Yang, S. ., Yang, M.-B., Feng, J.-M., & Huang, R. (2003). Effects of compatibilization on the essential work of fracture parameters of in situ microfiber reinforced poly(ethylene terephtahalate)/polyethylene blend. Materials Research Bulletin, 38(14), 1867-1878. doi:10.1016/j.materresbull.2003.07.007 es_ES
dc.description.references Ma, P., Hristova-Bogaerds, D. G., Goossens, J. G. P., Spoelstra, A. B., Zhang, Y., & Lemstra, P. J. (2012). Toughening of poly(lactic acid) by ethylene-co-vinyl acetate copolymer with different vinyl acetate contents. European Polymer Journal, 48(1), 146-154. doi:10.1016/j.eurpolymj.2011.10.015 es_ES
dc.description.references Garcia-Garcia, D., Rayón, E., Carbonell-Verdu, A., Lopez-Martinez, J., & Balart, R. (2017). Improvement of the compatibility between poly(3-hydroxybutyrate) and poly(ε-caprolactone) by reactive extrusion with dicumyl peroxide. European Polymer Journal, 86, 41-57. doi:10.1016/j.eurpolymj.2016.11.018 es_ES
dc.description.references Zhou, Y., Wang, J., Cai, S.-Y., Wang, Z.-G., Zhang, N.-W., & Ren, J. (2018). Effect of POE-g-GMA on mechanical, rheological and thermal properties of poly(lactic acid)/poly(propylene carbonate) blends. Polymer Bulletin, 75(12), 5437-5454. doi:10.1007/s00289-018-2339-5 es_ES
dc.description.references Sewda, K., & Maiti, S. N. (2013). Dynamic mechanical properties of high density polyethylene and teak wood flour composites. Polymer Bulletin, 70(10), 2657-2674. doi:10.1007/s00289-013-0941-0 es_ES
dc.description.references Gao, J., Bai, H., Zhang, Q., Gao, Y., Chen, L., & Fu, Q. (2012). Effect of homopolymer poly(vinyl acetate) on compatibility and mechanical properties of poly(propylene carbonate)/poly(lactic acid) blends. Express Polymer Letters, 6(11), 860-870. doi:10.3144/expresspolymlett.2012.92 es_ES
dc.description.references Ma, X., Yu, J., & Wang, N. (2005). Compatibility characterization of poly(lactic acid)/poly(propylene carbonate) blends. Journal of Polymer Science Part B: Polymer Physics, 44(1), 94-101. doi:10.1002/polb.20669 es_ES
dc.description.references Lu, X., Tang, L., Wang, L., Zhao, J., Li, D., Wu, Z., & Xiao, P. (2016). Morphology and properties of bio-based poly (lactic acid)/high-density polyethylene blends and their glass fiber reinforced composites. Polymer Testing, 54, 90-97. doi:10.1016/j.polymertesting.2016.06.025 es_ES
dc.description.references Zhao, M., Ding, X., Mi, J., Zhou, H., & Wang, X. (2017). Role of high-density polyethylene in the crystallization behaviors, rheological property, and supercritical CO2 foaming of poly (lactic acid). Polymer Degradation and Stability, 146, 277-286. doi:10.1016/j.polymdegradstab.2017.11.003 es_ES
dc.description.references Quitadamo, A., Massardier, V., Santulli, C., & Valente, M. (2018). Optimization of Thermoplastic Blend Matrix HDPE/PLA with Different Types and Levels of Coupling Agents. Materials, 11(12), 2527. doi:10.3390/ma11122527 es_ES
dc.description.references Gallego, R., López-Quintana, S., Basurto, F., Núñez, K., Villarreal, N., & Merino, J. C. (2013). Synthesis of new compatibilizers to poly(lactic acid) blends. Polymer Engineering & Science, 54(3), 522-530. doi:10.1002/pen.23589 es_ES
dc.description.references Lovinčić Milovanović, V., Hajdinjak, I., Lovriša, I., & Vrsaljko, D. (2019). The influence of the dispersed phase on the morphology, mechanical and thermal properties of PLA/PE‐LD and PLA/PE‐HD polymer blends and their nanocomposites with TiO 2 and CaCO 3. Polymer Engineering & Science, 59(7), 1395-1408. doi:10.1002/pen.25124 es_ES
dc.description.references Ji, D., Liu, Z., Lan, X., Wu, F., Xie, B., & Yang, M. (2013). Morphology, rheology, crystallization behavior, and mechanical properties of poly(lactic acid)/poly(butylene succinate)/dicumyl peroxide reactive blends. Journal of Applied Polymer Science, 131(3), n/a-n/a. doi:10.1002/app.39580 es_ES
dc.description.references Vrsaljko, D., Macut, D., & Kovačević, V. (2014). Potential role of nanofillers as compatibilizers in immiscible PLA/LDPE Blends. Journal of Applied Polymer Science, 132(6), n/a-n/a. doi:10.1002/app.41414 es_ES
dc.subject.ods 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación es_ES
dc.subject.ods 12.- Garantizar las pautas de consumo y de producción sostenibles es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem