- -

Experimental analysis of the shear strength of composite concrete beams without web reinforcement

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Experimental analysis of the shear strength of composite concrete beams without web reinforcement

Mostrar el registro completo del ítem

Rueda-García, L.; Bonet Senach, JL.; Miguel Sosa, P.; Fernández Prada, MÁ. (2021). Experimental analysis of the shear strength of composite concrete beams without web reinforcement. Engineering Structures. 229:1-17. https://doi.org/10.1016/j.engstruct.2020.111664

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/163183

Ficheros en el ítem

Metadatos del ítem

Título: Experimental analysis of the shear strength of composite concrete beams without web reinforcement
Autor: Rueda-García, Lisbel Bonet Senach, José Luís Miguel Sosa, Pedro Fernández Prada, Miguel Ángel
Entidad UPV: Universitat Politècnica de València. Instituto de Ciencia y Tecnología del Hormigón - Institut de Ciència i Tecnologia del Formigó
Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil
Fecha difusión:
Resumen:
[EN] Composite concrete members without web reinforcement are often used in precast construction. The contribution of the cast-in-place concrete topping slab to vertical shear strength has been traditionally disregarded. ...[+]
Palabras clave: Reinforced concrete , Composite beam , T-shaped beam , Precast construction , Vertical shear strength , Horizontal shear strength , Differential shrinkage
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Engineering Structures. (issn: 0141-0296 )
DOI: 10.1016/j.engstruct.2020.111664
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.engstruct.2020.111664
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//BIA2015-64672-C4-4-R/ES/EVALUACION EXPERIMENTAL DE VIGAS CONTINUAS PRETENSADAS, CON Y SIN REFUERZO, Y PIEZAS COMPUESTAS DE DOS HORMIGONES, PARA LA EXTENSION DE SU VIDA UTIL./
info:eu-repo/grantAgreement/AEI//BES-2016-078010/
info:eu-repo/grantAgreement/GVA//AICO%2F2018%2F250/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-099091-B-C21/ES/MEJORA DE LA SOSTENIBILIDAD, SEGURIDAD Y RESILIENCIA DE LA CONEXION ENTRE VIGAS SEGMENTADAS PREFABRICADAS DE HORMIGON MEDIANTE EL USO DE NUEVOS MATERIALES./
Agradecimientos:
This research has been supported by: the Spanish Ministry of Science and Innovation through Research Project BIA2015-64672-C4-4-R and RTI2018-099091-B-C21-AR; the Regional Government of Valencia through Project AICO/2018/250; ...[+]
Tipo: Artículo

References

Ribas González, C. R., & Fernández Ruiz, M. (2017). Influence of flanges on the shear-carrying capacity of reinforced concrete beams without web reinforcement. Structural Concrete, 18(5), 720-732. doi:10.1002/suco.201600172

Loov, R. E., & Patnaik, A. K. (1994). Horizontal Shear Strength of Composite Concrete Beams With a Rough Interface. PCI Journal, 39(1), 48-69. doi:10.15554/pcij.01011994.48.69

Kovach J, Naito C. Horizontal shear capacity of composite concrete beams without interface ties. ATLSS Report No. 05-09; 2008. [+]
Ribas González, C. R., & Fernández Ruiz, M. (2017). Influence of flanges on the shear-carrying capacity of reinforced concrete beams without web reinforcement. Structural Concrete, 18(5), 720-732. doi:10.1002/suco.201600172

Loov, R. E., & Patnaik, A. K. (1994). Horizontal Shear Strength of Composite Concrete Beams With a Rough Interface. PCI Journal, 39(1), 48-69. doi:10.15554/pcij.01011994.48.69

Kovach J, Naito C. Horizontal shear capacity of composite concrete beams without interface ties. ATLSS Report No. 05-09; 2008.

Fang, Z., Jiang, H., Liu, A., Feng, J., & Chen, Y. (2018). Horizontal Shear Behaviors of Normal Weight and Lightweight Concrete Composite T-Beams. International Journal of Concrete Structures and Materials, 12(1). doi:10.1186/s40069-018-0274-3

ACI Committee 318. Building code requirements for structural concrete (ACI 318-19); and commentary (ACI 318R-19). Farmington Hills: American Concrete Institute; 2019.

Marí, A., Cladera, A., Bairán, J., Oller, E., & Ribas, C. (2014). Shear-flexural strength mechanical model for the design and assessment of reinforced concrete beams subjected to point or distributed loads. Frontiers of Structural and Civil Engineering, 8(4), 337-353. doi:10.1007/s11709-014-0081-0

Avendaño AR, Bayrak O. Shear strength and behaviour of prestressed concrete beams. Technical Report: IAC-88-5DD1A003-3, Texas Department of Transportation; 2008.

Fédération International du Béton (fib). Model Code 2010. Ernst & Sohn; 2012.

CEN. EN 1992-1-1:2004. Eurocode 2: Design of concrete structures - Part 1-1: General rules and rules for buildings; 2004.

Halicka, A., & Jabłoński, Ł. (2016). Shear failure mechanism of composite concrete T-shaped beams. Proceedings of the Institution of Civil Engineers - Structures and Buildings, 169(1), 67-75. doi:10.1680/stbu.14.00127

Halicka, A. (2011). Influence new-to-old concrete interface qualities on the behaviour of support zones of composite concrete beams. Construction and Building Materials, 25(10), 4072-4078. doi:10.1016/j.conbuildmat.2011.04.045

Swamy, R. N., Andriopoulos, A., & Adepegba, D. (1970). Arch Action and Bond in Concrete Shear Failures. Journal of the Structural Division, 96(6), 1069-1091. doi:10.1061/jsdeag.0002596

Rueda-García L, Bonet Senach JL, Miguel Sosa PF. Influence of interface roughness and shear reinforcement ratio in vertical shear strength of composite concrete beams. In: ACHE, editor. VIII Congr. la Asoc. Española Ing. Estructural, ACHE, Santander; 2020.

UNE-EN 12390-3:2020. Testing hardened concrete - Part 3: Compressive strength of test specimens; 2020.

UNE-EN 12390-6:2010. Testing hardened concrete - Part 6: Tensile splitting strength of test specimens; 2010.

UNE-EN 12390-13:2014. Testing hardened concrete - Part 13: Determination of secant modulus of elasticity in compression; 2014.

UNE-EN ISO 6892-1:2017. Metallic materials - Tensile testing - Part 1: Method of test at room temperature; 2017.

Fernández Ruiz, M., Muttoni, A., & Sagaseta, J. (2015). Shear strength of concrete members without transverse reinforcement: A mechanical approach to consistently account for size and strain effects. Engineering Structures, 99, 360-372. doi:10.1016/j.engstruct.2015.05.007

Ayensa, A., Oller, E., Beltrán, B., Ibarz, E., Marí, A., & Gracia, L. (2019). Influence of the flanges width and thickness on the shear strength of reinforced concrete beams with T-shaped cross section. Engineering Structures, 188, 506-518. doi:10.1016/j.engstruct.2019.03.057

Swamy, R. N., & Qureshi, S. A. (1974). An ultimate shear strength theory for reinforced concrete T-beams without web reinforcement. Matériaux et Constructions, 7(3), 181-189. doi:10.1007/bf02473833

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem