- -

Experimental analysis of the shear strength of composite concrete beams without web reinforcement

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Experimental analysis of the shear strength of composite concrete beams without web reinforcement

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Rueda-García, Lisbel es_ES
dc.contributor.author Bonet Senach, José Luís es_ES
dc.contributor.author Miguel Sosa, Pedro es_ES
dc.contributor.author Fernández Prada, Miguel Ángel es_ES
dc.date.accessioned 2021-03-05T04:32:12Z
dc.date.available 2021-03-05T04:32:12Z
dc.date.issued 2021-02-15 es_ES
dc.identifier.issn 0141-0296 es_ES
dc.identifier.uri http://hdl.handle.net/10251/163183
dc.description.abstract [EN] Composite concrete members without web reinforcement are often used in precast construction. The contribution of the cast-in-place concrete topping slab to vertical shear strength has been traditionally disregarded. However, significant cost savings can result from designing and assessing these structures if this contribution is considered. This paper presents the experimental study of a series of 21 monolithic and composite (precast beam and cast-in-place slab) specimens without web reinforcement, and with rectangular and T-shaped cross-sections, failing in shear. The vertical shear strength was analysed by the following test variables: cross-section shape, the existence of an interface between different aged concretes, strengths of the two concretes and the differential shrinkage effect. From these experimental tests, it was concluded that the slab contributed to shear strength, the use of high-strength concrete slightly increased specimens' shear strength and the differential shrinkage did not reduce shear strength. Specimens' failure modes were analysed based on their shear transfer mechanisms, noticing that the arching action in the slab was considerable after critical shear crack formation. The vertical shear strength experimental results were well predicted by the codes' formulations (Eurocode 2, Model Code 2010 and ACI 318-19) when composite beam depth was taken for the calculations instead of beam depth. Codes significantly underestimated the horizontal shear strengths of the composite specimens. es_ES
dc.description.sponsorship This research has been supported by: the Spanish Ministry of Science and Innovation through Research Project BIA2015-64672-C4-4-R and RTI2018-099091-B-C21-AR; the Regional Government of Valencia through Project AICO/2018/250; the European Union with FEDER funds. The experimental programme was developed in the Laboratory of Concrete of the Institute of Concrete Science and Technology (ICITECH) of the Universitat Politècnica de València (UPV) with concrete supplied by Caplansa. The Spanish Ministry of Science and Innovation supported Lisbel Rueda through grant BES-2016-078010. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Engineering Structures es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Reinforced concrete es_ES
dc.subject Composite beam es_ES
dc.subject T-shaped beam es_ES
dc.subject Precast construction es_ES
dc.subject Vertical shear strength es_ES
dc.subject Horizontal shear strength es_ES
dc.subject Differential shrinkage es_ES
dc.subject.classification INGENIERIA DE LA CONSTRUCCION es_ES
dc.title Experimental analysis of the shear strength of composite concrete beams without web reinforcement es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.engstruct.2020.111664 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BIA2015-64672-C4-4-R/ES/EVALUACION EXPERIMENTAL DE VIGAS CONTINUAS PRETENSADAS, CON Y SIN REFUERZO, Y PIEZAS COMPUESTAS DE DOS HORMIGONES, PARA LA EXTENSION DE SU VIDA UTIL./ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//BES-2016-078010/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//AICO%2F2018%2F250/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-099091-B-C21/ES/MEJORA DE LA SOSTENIBILIDAD, SEGURIDAD Y RESILIENCIA DE LA CONEXION ENTRE VIGAS SEGMENTADAS PREFABRICADAS DE HORMIGON MEDIANTE EL USO DE NUEVOS MATERIALES./ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Ciencia y Tecnología del Hormigón - Institut de Ciència i Tecnologia del Formigó es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil es_ES
dc.description.bibliographicCitation Rueda-García, L.; Bonet Senach, JL.; Miguel Sosa, P.; Fernández Prada, MÁ. (2021). Experimental analysis of the shear strength of composite concrete beams without web reinforcement. Engineering Structures. 229:1-17. https://doi.org/10.1016/j.engstruct.2020.111664 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.engstruct.2020.111664 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 17 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 229 es_ES
dc.relation.pasarela S\424638 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Ribas González, C. R., & Fernández Ruiz, M. (2017). Influence of flanges on the shear-carrying capacity of reinforced concrete beams without web reinforcement. Structural Concrete, 18(5), 720-732. doi:10.1002/suco.201600172 es_ES
dc.description.references Loov, R. E., & Patnaik, A. K. (1994). Horizontal Shear Strength of Composite Concrete Beams With a Rough Interface. PCI Journal, 39(1), 48-69. doi:10.15554/pcij.01011994.48.69 es_ES
dc.description.references Kovach J, Naito C. Horizontal shear capacity of composite concrete beams without interface ties. ATLSS Report No. 05-09; 2008. es_ES
dc.description.references Fang, Z., Jiang, H., Liu, A., Feng, J., & Chen, Y. (2018). Horizontal Shear Behaviors of Normal Weight and Lightweight Concrete Composite T-Beams. International Journal of Concrete Structures and Materials, 12(1). doi:10.1186/s40069-018-0274-3 es_ES
dc.description.references ACI Committee 318. Building code requirements for structural concrete (ACI 318-19); and commentary (ACI 318R-19). Farmington Hills: American Concrete Institute; 2019. es_ES
dc.description.references Marí, A., Cladera, A., Bairán, J., Oller, E., & Ribas, C. (2014). Shear-flexural strength mechanical model for the design and assessment of reinforced concrete beams subjected to point or distributed loads. Frontiers of Structural and Civil Engineering, 8(4), 337-353. doi:10.1007/s11709-014-0081-0 es_ES
dc.description.references Avendaño AR, Bayrak O. Shear strength and behaviour of prestressed concrete beams. Technical Report: IAC-88-5DD1A003-3, Texas Department of Transportation; 2008. es_ES
dc.description.references Fédération International du Béton (fib). Model Code 2010. Ernst & Sohn; 2012. es_ES
dc.description.references CEN. EN 1992-1-1:2004. Eurocode 2: Design of concrete structures - Part 1-1: General rules and rules for buildings; 2004. es_ES
dc.description.references Halicka, A., & Jabłoński, Ł. (2016). Shear failure mechanism of composite concrete T-shaped beams. Proceedings of the Institution of Civil Engineers - Structures and Buildings, 169(1), 67-75. doi:10.1680/stbu.14.00127 es_ES
dc.description.references Halicka, A. (2011). Influence new-to-old concrete interface qualities on the behaviour of support zones of composite concrete beams. Construction and Building Materials, 25(10), 4072-4078. doi:10.1016/j.conbuildmat.2011.04.045 es_ES
dc.description.references Swamy, R. N., Andriopoulos, A., & Adepegba, D. (1970). Arch Action and Bond in Concrete Shear Failures. Journal of the Structural Division, 96(6), 1069-1091. doi:10.1061/jsdeag.0002596 es_ES
dc.description.references Rueda-García L, Bonet Senach JL, Miguel Sosa PF. Influence of interface roughness and shear reinforcement ratio in vertical shear strength of composite concrete beams. In: ACHE, editor. VIII Congr. la Asoc. Española Ing. Estructural, ACHE, Santander; 2020. es_ES
dc.description.references UNE-EN 12390-3:2020. Testing hardened concrete - Part 3: Compressive strength of test specimens; 2020. es_ES
dc.description.references UNE-EN 12390-6:2010. Testing hardened concrete - Part 6: Tensile splitting strength of test specimens; 2010. es_ES
dc.description.references UNE-EN 12390-13:2014. Testing hardened concrete - Part 13: Determination of secant modulus of elasticity in compression; 2014. es_ES
dc.description.references UNE-EN ISO 6892-1:2017. Metallic materials - Tensile testing - Part 1: Method of test at room temperature; 2017. es_ES
dc.description.references Fernández Ruiz, M., Muttoni, A., & Sagaseta, J. (2015). Shear strength of concrete members without transverse reinforcement: A mechanical approach to consistently account for size and strain effects. Engineering Structures, 99, 360-372. doi:10.1016/j.engstruct.2015.05.007 es_ES
dc.description.references Ayensa, A., Oller, E., Beltrán, B., Ibarz, E., Marí, A., & Gracia, L. (2019). Influence of the flanges width and thickness on the shear strength of reinforced concrete beams with T-shaped cross section. Engineering Structures, 188, 506-518. doi:10.1016/j.engstruct.2019.03.057 es_ES
dc.description.references Swamy, R. N., & Qureshi, S. A. (1974). An ultimate shear strength theory for reinforced concrete T-beams without web reinforcement. Matériaux et Constructions, 7(3), 181-189. doi:10.1007/bf02473833 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem