- -

Maximising resource recovery from wastewater grown microalgae and primary sludge in an anaerobic membrane co-digestion pilot plant coupled to a composting process

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Maximising resource recovery from wastewater grown microalgae and primary sludge in an anaerobic membrane co-digestion pilot plant coupled to a composting process

Show simple item record

Files in this item

dc.contributor.author Serna-García, R. es_ES
dc.contributor.author Ruiz-Barriga, P. es_ES
dc.contributor.author Noriega-Hevia, G. es_ES
dc.contributor.author Serralta Sevilla, Joaquín es_ES
dc.contributor.author Paches Giner, Maria Aguas Vivas es_ES
dc.contributor.author Bouzas, A. es_ES
dc.date.accessioned 2021-03-05T04:32:21Z
dc.date.available 2021-03-05T04:32:21Z
dc.date.issued 2021-03-01 es_ES
dc.identifier.issn 0301-4797 es_ES
dc.identifier.uri http://hdl.handle.net/10251/163186
dc.description.abstract [EN] A pilot-scale microalgae (Chlorella spp.) and primary sludge anaerobic co-digestion (ACoD) plant was run for one year in an anaerobic membrane bioreactor (AnMBR) at 35 °C, 70 d solids retention time and 30 d hydraulic retention time, showing high stability in terms of pH and VFA concentration. The plant achieved a high degree of microalgae and primary sludge substrate degradation, resulting in a methane yield of 370 mLCH4·gVSinf¿1. Nutrient-rich effluent streams (685 mgN·L¿1 and 145 mgP·L¿1 in digestate and 395 mgNH4-N·L¿1 and 37 mgPO4-P·L¿1 in permeate) were obtained, allowing posterior nutrient recovery. Ammonium was recovered from the permeate as ammonia sulphate through a hydrophobic polypropylene hollow fibre membrane contactor, achieving 99% nitrogen recovery efficiency. However, phosphorus recovery through processes such as struvite precipitation was not applied since only 26% of the phosphate was available in the effluent. Composting process of the digestate coming from the ACoD pilot plant was assessed on laboratory-scale Dewar reactors, as was the conventional sludge compost from an industrial WWTP digestion process, obtaining similar values from both. Sanitised (free of Escherichia coli and Salmonella spp.) and stable compost (respirometric index at 37 °C below 0.5 mgO 2 g organic matter¿1·h¿1) was obtained from both sludges. es_ES
dc.description.sponsorship This research work was supported by the Spanish Ministry of Science and Innovation (Projects CTM 2014-54980-C2-1-R and CTM 2014- 54980-C2-2-R) jointly with the European Regional Development Fund (ERDF), which are gratefully acknowledged. It was also supported by the Spanish Ministry of Science and Innovation via a pre/doctoral FPI fellowship to the first author (BES-2015-071884, Project CTM 2014- 54980-C2-1-R). Technical support from the Entidad Pública de Saneamiento de Aguas Residuales de la Comunidad Valenciana is also gratefully acknowledged. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Journal of Environmental Management es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Composting es_ES
dc.subject Anaerobic co-digestion es_ES
dc.subject Microalgae es_ES
dc.subject Resource recovery es_ES
dc.subject Nutrients es_ES
dc.subject Methane es_ES
dc.subject.classification TECNOLOGIA DEL MEDIO AMBIENTE es_ES
dc.title Maximising resource recovery from wastewater grown microalgae and primary sludge in an anaerobic membrane co-digestion pilot plant coupled to a composting process es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.jenvman.2020.111890 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTM2014-54980-C2-1-R/ES/OBTENCION DE BIONUTRIENTES Y ENERGIA DEL AGUA RESIDUAL URBANA MEDIANTE CULTIVO DE MICROALGAS, TRATAMIENTOS ANAEROBIOS, CRISTALIZACION DE FOSFORO, ABSORCION DE NH3 Y COMPOSTAJE/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BES-2015-071884/ES/BES-2015-071884/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTM2014-54980-C2-2-R/ES/DESARROLLO DE UN SISTEMA DE CONTROL Y DE SOPORTE A LA DECISION PARA LA OBTENCION DE BIONUTRIENTES Y ENERGIA EN PROCESOS DE TRATAMIENTO DE AGUAS RESIDUALES URBANAS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.description.bibliographicCitation Serna-García, R.; Ruiz-Barriga, P.; Noriega-Hevia, G.; Serralta Sevilla, J.; Paches Giner, MAV.; Bouzas, A. (2021). Maximising resource recovery from wastewater grown microalgae and primary sludge in an anaerobic membrane co-digestion pilot plant coupled to a composting process. Journal of Environmental Management. 281:1-9. https://doi.org/10.1016/j.jenvman.2020.111890 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.jenvman.2020.111890 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 9 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 281 es_ES
dc.identifier.pmid 33385906 es_ES
dc.relation.pasarela S\424730 es_ES
dc.contributor.funder Ministerio de Economía y Empresa es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Acién, F. G., Gómez-Serrano, C., Morales-Amaral, M. M., Fernández-Sevilla, J. M., & Molina-Grima, E. (2016). Wastewater treatment using microalgae: how realistic a contribution might it be to significant urban wastewater treatment? Applied Microbiology and Biotechnology, 100(21), 9013-9022. doi:10.1007/s00253-016-7835-7 es_ES
dc.description.references Barat, R., Bouzas, A., Martí, N., Ferrer, J., & Seco, A. (2009). Precipitation assessment in wastewater treatment plants operated for biological nutrient removal: A case study in Murcia, Spain. Journal of Environmental Management, 90(2), 850-857. doi:10.1016/j.jenvman.2008.02.001 es_ES
dc.description.references Barrena Gómez, R., Vázquez Lima, F., Gordillo Bolasell, M. A., Gea, T., & Sánchez Ferrer, A. (2005). Respirometric assays at fixed and process temperatures to monitor composting process. Bioresource Technology, 96(10), 1153-1159. doi:10.1016/j.biortech.2004.09.026 es_ES
dc.description.references Becker, A. M., Yu, K., Stadler, L. B., & Smith, A. L. (2017). Co-management of domestic wastewater and food waste: A life cycle comparison of alternative food waste diversion strategies. Bioresource Technology, 223, 131-140. doi:10.1016/j.biortech.2016.10.031 es_ES
dc.description.references Cornel, P., & Schaum, C. (2009). Phosphorus recovery from wastewater: needs, technologies and costs. Water Science and Technology, 59(6), 1069-1076. doi:10.2166/wst.2009.045 es_ES
dc.description.references Dereli, R. K., Ersahin, M. E., Ozgun, H., Ozturk, I., Jeison, D., van der Zee, F., & van Lier, J. B. (2012). Potentials of anaerobic membrane bioreactors to overcome treatment limitations induced by industrial wastewaters. Bioresource Technology, 122, 160-170. doi:10.1016/j.biortech.2012.05.139 es_ES
dc.description.references Doyle, J. D., & Parsons, S. A. (2002). Struvite formation, control and recovery. Water Research, 36(16), 3925-3940. doi:10.1016/s0043-1354(02)00126-4 es_ES
dc.description.references Dube, P. J., Vanotti, M. B., Szogi, A. A., & García-González, M. C. (2016). Enhancing recovery of ammonia from swine manure anaerobic digester effluent using gas-permeable membrane technology. Waste Management, 49, 372-377. doi:10.1016/j.wasman.2015.12.011 es_ES
dc.description.references Fuchs, W., & Drosg, B. (2013). Assessment of the state of the art of technologies for the processing of digestate residue from anaerobic digesters. Water Science and Technology, 67(9), 1984-1993. doi:10.2166/wst.2013.075 es_ES
dc.description.references Gao, M., Liang, F., Yu, A., Li, B., & Yang, L. (2010). Evaluation of stability and maturity during forced-aeration composting of chicken manure and sawdust at different C/N ratios. Chemosphere, 78(5), 614-619. doi:10.1016/j.chemosphere.2009.10.056 es_ES
dc.description.references Giménez, J. B., Robles, A., Carretero, L., Durán, F., Ruano, M. V., Gatti, M. N., … Seco, A. (2011). Experimental study of the anaerobic urban wastewater treatment in a submerged hollow-fibre membrane bioreactor at pilot scale. Bioresource Technology, 102(19), 8799-8806. doi:10.1016/j.biortech.2011.07.014 es_ES
dc.description.references González-Camejo, J., Serna-García, R., Viruela, A., Pachés, M., Durán, F., Robles, A., … Seco, A. (2017). Short and long-term experiments on the effect of sulphide on microalgae cultivation in tertiary sewage treatment. Bioresource Technology, 244, 15-22. doi:10.1016/j.biortech.2017.07.126 es_ES
dc.description.references González-Camejo, J., Aparicio, S., Jiménez-Benítez, A., Pachés, M., Ruano, M. V., Borrás, L., … Seco, A. (2020). Improving membrane photobioreactor performance by reducing light path: operating conditions and key performance indicators. Water Research, 172, 115518. doi:10.1016/j.watres.2020.115518 es_ES
dc.description.references González-Fernández, C., Sialve, B., Bernet, N., & Steyer, J. P. (2012). Thermal pretreatment to improve methane production of Scenedesmus biomass. Biomass and Bioenergy, 40, 105-111. doi:10.1016/j.biombioe.2012.02.008 es_ES
dc.description.references Greses, S., Gaby, J. C., Aguado, D., Ferrer, J., Seco, A., & Horn, S. J. (2017). Microbial community characterization during anaerobic digestion of Scenedesmus spp. under mesophilic and thermophilic conditions. Algal Research, 27, 121-130. doi:10.1016/j.algal.2017.09.002 es_ES
dc.description.references Greses, S., Zamorano-López, N., Borrás, L., Ferrer, J., Seco, A., & Aguado, D. (2018). Effect of long residence time and high temperature over anaerobic biodegradation of Scenedesmus microalgae grown in wastewater. Journal of Environmental Management, 218, 425-434. doi:10.1016/j.jenvman.2018.04.086 es_ES
dc.description.references Huang, G. F., Wong, J. W. C., Wu, Q. T., & Nagar, B. B. (2004). Effect of C/N on composting of pig manure with sawdust. Waste Management, 24(8), 805-813. doi:10.1016/j.wasman.2004.03.011 es_ES
dc.description.references Khalid, A. A. H., Yaakob, Z., Abdullah, S. R. S., & Takriff, M. S. (2019). Assessing the feasibility of microalgae cultivation in agricultural wastewater: The nutrient characteristics. Environmental Technology & Innovation, 15, 100402. doi:10.1016/j.eti.2019.100402 es_ES
dc.description.references Kartohardjono, S., Iwan Fermi, M., Yuliusman, Y., Elkardiana, K., Putra Sangaji, A., & Maghfirwan Ramadhan, A. (2015). The Removal of Dissolved Ammonia from Wastewater through a Polypropylene Hollow Fiber Membrane Contactor. International Journal of Technology, 6(7), 1146. doi:10.14716/ijtech.v6i7.1845 es_ES
dc.description.references Magdalena, J., Ballesteros, M., & González-Fernandez, C. (2018). Efficient Anaerobic Digestion of Microalgae Biomass: Proteins as a Key Macromolecule. Molecules, 23(5), 1098. doi:10.3390/molecules23051098 es_ES
dc.description.references Manu, M. K., Kumar, R., & Garg, A. (2017). Performance assessment of improved composting system for food waste with varying aeration and use of microbial inoculum. Bioresource Technology, 234, 167-177. doi:10.1016/j.biortech.2017.03.023 es_ES
dc.description.references Marti, N., Ferrer, J., Seco, A., & Bouzas, A. (2008). Optimisation of sludge line management to enhance phosphorus recovery in WWTP. Water Research, 42(18), 4609-4618. doi:10.1016/j.watres.2008.08.012 es_ES
dc.description.references Marti, N., Bouzas, A., Seco, A., & Ferrer, J. (2008). Struvite precipitation assessment in anaerobic digestion processes. Chemical Engineering Journal, 141(1-3), 67-74. doi:10.1016/j.cej.2007.10.023 es_ES
dc.description.references Monlau, F., Sambusiti, C., Ficara, E., Aboulkas, A., Barakat, A., & Carrère, H. (2015). New opportunities for agricultural digestate valorization: current situation and perspectives. Energy & Environmental Science, 8(9), 2600-2621. doi:10.1039/c5ee01633a es_ES
dc.description.references Nag, R., Auer, A., Markey, B. K., Whyte, P., Nolan, S., O’Flaherty, V., … Cummins, E. (2019). Anaerobic digestion of agricultural manure and biomass – Critical indicators of risk and knowledge gaps. Science of The Total Environment, 690, 460-479. doi:10.1016/j.scitotenv.2019.06.512 es_ES
dc.description.references Nikaeen, M., Nafez, A. H., Bina, B., Nabavi, B. F., & Hassanzadeh, A. (2015). Respiration and enzymatic activities as indicators of stabilization of sewage sludge composting. Waste Management, 39, 104-110. doi:10.1016/j.wasman.2015.01.028 es_ES
dc.description.references Nkoa, R. (2013). Agricultural benefits and environmental risks of soil fertilization with anaerobic digestates: a review. Agronomy for Sustainable Development, 34(2), 473-492. doi:10.1007/s13593-013-0196-z es_ES
dc.description.references Noriega-Hevia, G., Serralta, J., Borrás, L., Seco, A., & Ferrer, J. (2020). Nitrogen recovery using a membrane contactor: Modelling nitrogen and pH evolution. Journal of Environmental Chemical Engineering, 8(4), 103880. doi:10.1016/j.jece.2020.103880 es_ES
dc.description.references Passos, F., Hernández-Mariné, M., García, J., & Ferrer, I. (2014). Long-term anaerobic digestion of microalgae grown in HRAP for wastewater treatment. Effect of microwave pretreatment. Water Research, 49, 351-359. doi:10.1016/j.watres.2013.10.013 es_ES
dc.description.references Puyuelo, B., Ponsá, S., Gea, T., & Sánchez, A. (2011). Determining C/N ratios for typical organic wastes using biodegradable fractions. Chemosphere, 85(4), 653-659. doi:10.1016/j.chemosphere.2011.07.014 es_ES
dc.description.references Ras, M., Lardon, L., Bruno, S., Bernet, N., & Steyer, J.-P. (2011). Experimental study on a coupled process of production and anaerobic digestion of Chlorella vulgaris. Bioresource Technology, 102(1), 200-206. doi:10.1016/j.biortech.2010.06.146 es_ES
dc.description.references Robles, Á., Ruano, M. V., Charfi, A., Lesage, G., Heran, M., Harmand, J., … Ferrer, J. (2018). A review on anaerobic membrane bioreactors (AnMBRs) focused on modelling and control aspects. Bioresource Technology, 270, 612-626. doi:10.1016/j.biortech.2018.09.049 es_ES
dc.description.references Seco, A., Aparicio, S., González-Camejo, J., Jiménez-Benítez, A., Mateo, O., Mora, J. F., … Ferrer, J. (2018). Resource recovery from sulphate-rich sewage through an innovative anaerobic-based water resource recovery facility (WRRF). Water Science and Technology, 78(9), 1925-1936. doi:10.2166/wst.2018.492 es_ES
dc.description.references Serna-García, R., Zamorano-López, N., Seco, A., & Bouzas, A. (2020). Co-digestion of harvested microalgae and primary sludge in a mesophilic anaerobic membrane bioreactor (AnMBR): Methane potential and microbial diversity. Bioresource Technology, 298, 122521. doi:10.1016/j.biortech.2019.122521 es_ES
dc.description.references Serna-García, R., Mora-Sánchez, J. F., Sanchis-Perucho, P., Bouzas, A., & Seco, A. (2020). Anaerobic membrane bioreactor (AnMBR) scale-up from laboratory to pilot-scale for microalgae and primary sludge co-digestion: Biological and filtration assessment. Bioresource Technology, 316, 123930. doi:10.1016/j.biortech.2020.123930 es_ES
dc.description.references Solé-Bundó, M., Salvadó, H., Passos, F., Garfí, M., & Ferrer, I. (2018). Strategies to Optimize Microalgae Conversion to Biogas: Co-Digestion, Pretreatment and Hydraulic Retention Time. Molecules, 23(9), 2096. doi:10.3390/molecules23092096 es_ES
dc.description.references Solé-Bundó, M., Garfí, M., Matamoros, V., & Ferrer, I. (2019). Co-digestion of microalgae and primary sludge: Effect on biogas production and microcontaminants removal. Science of The Total Environment, 660, 974-981. doi:10.1016/j.scitotenv.2019.01.011 es_ES
dc.description.references Ullah, K., Ahmad, M., Sofia, Sharma, V. K., Lu, P., Harvey, A., … Sultana, S. (2015). Assessing the potential of algal biomass opportunities for bioenergy industry: A review. Fuel, 143, 414-423. doi:10.1016/j.fuel.2014.10.064 es_ES
dc.description.references Wang, M., Lee, E., Dilbeck, M. P., Liebelt, M., Zhang, Q., & Ergas, S. J. (2016). Thermal pretreatment of microalgae for biomethane production: experimental studies, kinetics and energy analysis. Journal of Chemical Technology & Biotechnology, 92(2), 399-407. doi:10.1002/jctb.5018 es_ES
dc.subject.ods 06.- Garantizar la disponibilidad y la gestión sostenible del agua y el saneamiento para todos es_ES


This item appears in the following Collection(s)

Show simple item record