- -

Maximising resource recovery from wastewater grown microalgae and primary sludge in an anaerobic membrane co-digestion pilot plant coupled to a composting process

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Maximising resource recovery from wastewater grown microalgae and primary sludge in an anaerobic membrane co-digestion pilot plant coupled to a composting process

Mostrar el registro completo del ítem

Serna-García, R.; Ruiz-Barriga, P.; Noriega-Hevia, G.; Serralta Sevilla, J.; Paches Giner, MAV.; Bouzas, A. (2021). Maximising resource recovery from wastewater grown microalgae and primary sludge in an anaerobic membrane co-digestion pilot plant coupled to a composting process. Journal of Environmental Management. 281:1-9. https://doi.org/10.1016/j.jenvman.2020.111890

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/163186

Ficheros en el ítem

Metadatos del ítem

Título: Maximising resource recovery from wastewater grown microalgae and primary sludge in an anaerobic membrane co-digestion pilot plant coupled to a composting process
Autor: Serna-García, R. Ruiz-Barriga, P. Noriega-Hevia, G. Serralta Sevilla, Joaquín Paches Giner, Maria Aguas Vivas Bouzas, A.
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient
Fecha difusión:
Resumen:
[EN] A pilot-scale microalgae (Chlorella spp.) and primary sludge anaerobic co-digestion (ACoD) plant was run for one year in an anaerobic membrane bioreactor (AnMBR) at 35 °C, 70 d solids retention time and 30 d hydraulic ...[+]
Palabras clave: Composting , Anaerobic co-digestion , Microalgae , Resource recovery , Nutrients , Methane
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Journal of Environmental Management. (issn: 0301-4797 )
DOI: 10.1016/j.jenvman.2020.111890
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.jenvman.2020.111890
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//CTM2014-54980-C2-1-R/ES/OBTENCION DE BIONUTRIENTES Y ENERGIA DEL AGUA RESIDUAL URBANA MEDIANTE CULTIVO DE MICROALGAS, TRATAMIENTOS ANAEROBIOS, CRISTALIZACION DE FOSFORO, ABSORCION DE NH3 Y COMPOSTAJE/
info:eu-repo/grantAgreement/MINECO//BES-2015-071884/ES/BES-2015-071884/
info:eu-repo/grantAgreement/MINECO//CTM2014-54980-C2-2-R/ES/DESARROLLO DE UN SISTEMA DE CONTROL Y DE SOPORTE A LA DECISION PARA LA OBTENCION DE BIONUTRIENTES Y ENERGIA EN PROCESOS DE TRATAMIENTO DE AGUAS RESIDUALES URBANAS/
Agradecimientos:
This research work was supported by the Spanish Ministry of Science and Innovation (Projects CTM 2014-54980-C2-1-R and CTM 2014- 54980-C2-2-R) jointly with the European Regional Development Fund (ERDF), which are gratefully ...[+]
Tipo: Artículo

References

Acién, F. G., Gómez-Serrano, C., Morales-Amaral, M. M., Fernández-Sevilla, J. M., & Molina-Grima, E. (2016). Wastewater treatment using microalgae: how realistic a contribution might it be to significant urban wastewater treatment? Applied Microbiology and Biotechnology, 100(21), 9013-9022. doi:10.1007/s00253-016-7835-7

Barat, R., Bouzas, A., Martí, N., Ferrer, J., & Seco, A. (2009). Precipitation assessment in wastewater treatment plants operated for biological nutrient removal: A case study in Murcia, Spain. Journal of Environmental Management, 90(2), 850-857. doi:10.1016/j.jenvman.2008.02.001

Barrena Gómez, R., Vázquez Lima, F., Gordillo Bolasell, M. A., Gea, T., & Sánchez Ferrer, A. (2005). Respirometric assays at fixed and process temperatures to monitor composting process. Bioresource Technology, 96(10), 1153-1159. doi:10.1016/j.biortech.2004.09.026 [+]
Acién, F. G., Gómez-Serrano, C., Morales-Amaral, M. M., Fernández-Sevilla, J. M., & Molina-Grima, E. (2016). Wastewater treatment using microalgae: how realistic a contribution might it be to significant urban wastewater treatment? Applied Microbiology and Biotechnology, 100(21), 9013-9022. doi:10.1007/s00253-016-7835-7

Barat, R., Bouzas, A., Martí, N., Ferrer, J., & Seco, A. (2009). Precipitation assessment in wastewater treatment plants operated for biological nutrient removal: A case study in Murcia, Spain. Journal of Environmental Management, 90(2), 850-857. doi:10.1016/j.jenvman.2008.02.001

Barrena Gómez, R., Vázquez Lima, F., Gordillo Bolasell, M. A., Gea, T., & Sánchez Ferrer, A. (2005). Respirometric assays at fixed and process temperatures to monitor composting process. Bioresource Technology, 96(10), 1153-1159. doi:10.1016/j.biortech.2004.09.026

Becker, A. M., Yu, K., Stadler, L. B., & Smith, A. L. (2017). Co-management of domestic wastewater and food waste: A life cycle comparison of alternative food waste diversion strategies. Bioresource Technology, 223, 131-140. doi:10.1016/j.biortech.2016.10.031

Cornel, P., & Schaum, C. (2009). Phosphorus recovery from wastewater: needs, technologies and costs. Water Science and Technology, 59(6), 1069-1076. doi:10.2166/wst.2009.045

Dereli, R. K., Ersahin, M. E., Ozgun, H., Ozturk, I., Jeison, D., van der Zee, F., & van Lier, J. B. (2012). Potentials of anaerobic membrane bioreactors to overcome treatment limitations induced by industrial wastewaters. Bioresource Technology, 122, 160-170. doi:10.1016/j.biortech.2012.05.139

Doyle, J. D., & Parsons, S. A. (2002). Struvite formation, control and recovery. Water Research, 36(16), 3925-3940. doi:10.1016/s0043-1354(02)00126-4

Dube, P. J., Vanotti, M. B., Szogi, A. A., & García-González, M. C. (2016). Enhancing recovery of ammonia from swine manure anaerobic digester effluent using gas-permeable membrane technology. Waste Management, 49, 372-377. doi:10.1016/j.wasman.2015.12.011

Fuchs, W., & Drosg, B. (2013). Assessment of the state of the art of technologies for the processing of digestate residue from anaerobic digesters. Water Science and Technology, 67(9), 1984-1993. doi:10.2166/wst.2013.075

Gao, M., Liang, F., Yu, A., Li, B., & Yang, L. (2010). Evaluation of stability and maturity during forced-aeration composting of chicken manure and sawdust at different C/N ratios. Chemosphere, 78(5), 614-619. doi:10.1016/j.chemosphere.2009.10.056

Giménez, J. B., Robles, A., Carretero, L., Durán, F., Ruano, M. V., Gatti, M. N., … Seco, A. (2011). Experimental study of the anaerobic urban wastewater treatment in a submerged hollow-fibre membrane bioreactor at pilot scale. Bioresource Technology, 102(19), 8799-8806. doi:10.1016/j.biortech.2011.07.014

González-Camejo, J., Serna-García, R., Viruela, A., Pachés, M., Durán, F., Robles, A., … Seco, A. (2017). Short and long-term experiments on the effect of sulphide on microalgae cultivation in tertiary sewage treatment. Bioresource Technology, 244, 15-22. doi:10.1016/j.biortech.2017.07.126

González-Camejo, J., Aparicio, S., Jiménez-Benítez, A., Pachés, M., Ruano, M. V., Borrás, L., … Seco, A. (2020). Improving membrane photobioreactor performance by reducing light path: operating conditions and key performance indicators. Water Research, 172, 115518. doi:10.1016/j.watres.2020.115518

González-Fernández, C., Sialve, B., Bernet, N., & Steyer, J. P. (2012). Thermal pretreatment to improve methane production of Scenedesmus biomass. Biomass and Bioenergy, 40, 105-111. doi:10.1016/j.biombioe.2012.02.008

Greses, S., Gaby, J. C., Aguado, D., Ferrer, J., Seco, A., & Horn, S. J. (2017). Microbial community characterization during anaerobic digestion of Scenedesmus spp. under mesophilic and thermophilic conditions. Algal Research, 27, 121-130. doi:10.1016/j.algal.2017.09.002

Greses, S., Zamorano-López, N., Borrás, L., Ferrer, J., Seco, A., & Aguado, D. (2018). Effect of long residence time and high temperature over anaerobic biodegradation of Scenedesmus microalgae grown in wastewater. Journal of Environmental Management, 218, 425-434. doi:10.1016/j.jenvman.2018.04.086

Huang, G. F., Wong, J. W. C., Wu, Q. T., & Nagar, B. B. (2004). Effect of C/N on composting of pig manure with sawdust. Waste Management, 24(8), 805-813. doi:10.1016/j.wasman.2004.03.011

Khalid, A. A. H., Yaakob, Z., Abdullah, S. R. S., & Takriff, M. S. (2019). Assessing the feasibility of microalgae cultivation in agricultural wastewater: The nutrient characteristics. Environmental Technology & Innovation, 15, 100402. doi:10.1016/j.eti.2019.100402

Kartohardjono, S., Iwan Fermi, M., Yuliusman, Y., Elkardiana, K., Putra Sangaji, A., & Maghfirwan Ramadhan, A. (2015). The Removal of Dissolved Ammonia from Wastewater through a Polypropylene Hollow Fiber Membrane Contactor. International Journal of Technology, 6(7), 1146. doi:10.14716/ijtech.v6i7.1845

Magdalena, J., Ballesteros, M., & González-Fernandez, C. (2018). Efficient Anaerobic Digestion of Microalgae Biomass: Proteins as a Key Macromolecule. Molecules, 23(5), 1098. doi:10.3390/molecules23051098

Manu, M. K., Kumar, R., & Garg, A. (2017). Performance assessment of improved composting system for food waste with varying aeration and use of microbial inoculum. Bioresource Technology, 234, 167-177. doi:10.1016/j.biortech.2017.03.023

Marti, N., Ferrer, J., Seco, A., & Bouzas, A. (2008). Optimisation of sludge line management to enhance phosphorus recovery in WWTP. Water Research, 42(18), 4609-4618. doi:10.1016/j.watres.2008.08.012

Marti, N., Bouzas, A., Seco, A., & Ferrer, J. (2008). Struvite precipitation assessment in anaerobic digestion processes. Chemical Engineering Journal, 141(1-3), 67-74. doi:10.1016/j.cej.2007.10.023

Monlau, F., Sambusiti, C., Ficara, E., Aboulkas, A., Barakat, A., & Carrère, H. (2015). New opportunities for agricultural digestate valorization: current situation and perspectives. Energy & Environmental Science, 8(9), 2600-2621. doi:10.1039/c5ee01633a

Nag, R., Auer, A., Markey, B. K., Whyte, P., Nolan, S., O’Flaherty, V., … Cummins, E. (2019). Anaerobic digestion of agricultural manure and biomass – Critical indicators of risk and knowledge gaps. Science of The Total Environment, 690, 460-479. doi:10.1016/j.scitotenv.2019.06.512

Nikaeen, M., Nafez, A. H., Bina, B., Nabavi, B. F., & Hassanzadeh, A. (2015). Respiration and enzymatic activities as indicators of stabilization of sewage sludge composting. Waste Management, 39, 104-110. doi:10.1016/j.wasman.2015.01.028

Nkoa, R. (2013). Agricultural benefits and environmental risks of soil fertilization with anaerobic digestates: a review. Agronomy for Sustainable Development, 34(2), 473-492. doi:10.1007/s13593-013-0196-z

Noriega-Hevia, G., Serralta, J., Borrás, L., Seco, A., & Ferrer, J. (2020). Nitrogen recovery using a membrane contactor: Modelling nitrogen and pH evolution. Journal of Environmental Chemical Engineering, 8(4), 103880. doi:10.1016/j.jece.2020.103880

Passos, F., Hernández-Mariné, M., García, J., & Ferrer, I. (2014). Long-term anaerobic digestion of microalgae grown in HRAP for wastewater treatment. Effect of microwave pretreatment. Water Research, 49, 351-359. doi:10.1016/j.watres.2013.10.013

Puyuelo, B., Ponsá, S., Gea, T., & Sánchez, A. (2011). Determining C/N ratios for typical organic wastes using biodegradable fractions. Chemosphere, 85(4), 653-659. doi:10.1016/j.chemosphere.2011.07.014

Ras, M., Lardon, L., Bruno, S., Bernet, N., & Steyer, J.-P. (2011). Experimental study on a coupled process of production and anaerobic digestion of Chlorella vulgaris. Bioresource Technology, 102(1), 200-206. doi:10.1016/j.biortech.2010.06.146

Robles, Á., Ruano, M. V., Charfi, A., Lesage, G., Heran, M., Harmand, J., … Ferrer, J. (2018). A review on anaerobic membrane bioreactors (AnMBRs) focused on modelling and control aspects. Bioresource Technology, 270, 612-626. doi:10.1016/j.biortech.2018.09.049

Seco, A., Aparicio, S., González-Camejo, J., Jiménez-Benítez, A., Mateo, O., Mora, J. F., … Ferrer, J. (2018). Resource recovery from sulphate-rich sewage through an innovative anaerobic-based water resource recovery facility (WRRF). Water Science and Technology, 78(9), 1925-1936. doi:10.2166/wst.2018.492

Serna-García, R., Zamorano-López, N., Seco, A., & Bouzas, A. (2020). Co-digestion of harvested microalgae and primary sludge in a mesophilic anaerobic membrane bioreactor (AnMBR): Methane potential and microbial diversity. Bioresource Technology, 298, 122521. doi:10.1016/j.biortech.2019.122521

Serna-García, R., Mora-Sánchez, J. F., Sanchis-Perucho, P., Bouzas, A., & Seco, A. (2020). Anaerobic membrane bioreactor (AnMBR) scale-up from laboratory to pilot-scale for microalgae and primary sludge co-digestion: Biological and filtration assessment. Bioresource Technology, 316, 123930. doi:10.1016/j.biortech.2020.123930

Solé-Bundó, M., Salvadó, H., Passos, F., Garfí, M., & Ferrer, I. (2018). Strategies to Optimize Microalgae Conversion to Biogas: Co-Digestion, Pretreatment and Hydraulic Retention Time. Molecules, 23(9), 2096. doi:10.3390/molecules23092096

Solé-Bundó, M., Garfí, M., Matamoros, V., & Ferrer, I. (2019). Co-digestion of microalgae and primary sludge: Effect on biogas production and microcontaminants removal. Science of The Total Environment, 660, 974-981. doi:10.1016/j.scitotenv.2019.01.011

Ullah, K., Ahmad, M., Sofia, Sharma, V. K., Lu, P., Harvey, A., … Sultana, S. (2015). Assessing the potential of algal biomass opportunities for bioenergy industry: A review. Fuel, 143, 414-423. doi:10.1016/j.fuel.2014.10.064

Wang, M., Lee, E., Dilbeck, M. P., Liebelt, M., Zhang, Q., & Ergas, S. J. (2016). Thermal pretreatment of microalgae for biomethane production: experimental studies, kinetics and energy analysis. Journal of Chemical Technology & Biotechnology, 92(2), 399-407. doi:10.1002/jctb.5018

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem