- -

Future trends of dissolved inorganic nitrogen concentrations in Northwestern Mediterranean coastal waters under climate change

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Future trends of dissolved inorganic nitrogen concentrations in Northwestern Mediterranean coastal waters under climate change

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Temino-Boes, Regina es_ES
dc.contributor.author García-Bartual, Rafael es_ES
dc.contributor.author Romero Gil, Inmaculada es_ES
dc.contributor.author Romero-Lopez, Rabindranarth es_ES
dc.date.accessioned 2021-03-05T04:32:29Z
dc.date.available 2021-03-05T04:32:29Z
dc.date.issued 2021-03-15 es_ES
dc.identifier.issn 0301-4797 es_ES
dc.identifier.uri http://hdl.handle.net/10251/163190
dc.description.abstract [EN] Coastal ecosystems are amongst the most vulnerable to climate change, due to their location at the land-sea interface. In coastal waters, the nitrogen cycle can be significantly altered by rising temperatures and other factors derived from climate change, affecting phytoplankton and higher trophic levels. This research analyzes the effect of meteorological variables on dissolved inorganic nitrogen (DIN) species in coastal inshore waters of a Northwestern Mediterranean region under climate change. We built simple mathematical schemes based on artificial neural networks (ANN), trained with field data. Then, we used regional climatic projections for the Spanish Mediterranean coast to provide inputs to the trained ANNs, and thus, allowing the estimation of future DIN trends throughout the 21st century. The results obtained indicate that nitrite and nitrate concentrations are expected to decrease mainly due to rising temperatures and decreasing continental inputs. Major changes are projected for the winter season, driven by a rise in minimum temperatures which decrease the nitrite and nitrate peaks observed at low temperatures. Ammonium concentrations are not expected to undergo a significant annual trend but may either increase or decrease during some months. These results entail a preliminary simplified approach to estimate the impact of meteorological changes on DIN concentrations in coastal waters under climate change. es_ES
dc.description.sponsorship Field data collection was supported by the Valencian Ministry of the Environment, Water, Urban Planning and Housing. The work was partly supported by a Cotutelle PhD scholarship granted by Universitat Politècnica de València. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Journal of Environmental Management es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Artificial neural networks es_ES
dc.subject Climate change es_ES
dc.subject Coastal waters es_ES
dc.subject Dissolved inorganic nitrogen es_ES
dc.subject Mediterranean sea es_ES
dc.subject.classification INGENIERIA HIDRAULICA es_ES
dc.subject.classification TECNOLOGIA DEL MEDIO AMBIENTE es_ES
dc.title Future trends of dissolved inorganic nitrogen concentrations in Northwestern Mediterranean coastal waters under climate change es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.jenvman.2020.111739 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.description.bibliographicCitation Temino-Boes, R.; García-Bartual, R.; Romero Gil, I.; Romero-Lopez, R. (2021). Future trends of dissolved inorganic nitrogen concentrations in Northwestern Mediterranean coastal waters under climate change. Journal of Environmental Management. 282:1-12. https://doi.org/10.1016/j.jenvman.2020.111739 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.jenvman.2020.111739 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 12 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 282 es_ES
dc.identifier.pmid 33461817 es_ES
dc.relation.pasarela S\427054 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Abdullahi, J., & Elkiran, G. (2017). Prediction of the future impact of climate change on reference evapotranspiration in Cyprus using artificial neural network. Procedia Computer Science, 120, 276-283. doi:10.1016/j.procs.2017.11.239 es_ES
dc.description.references Aguilera, R., Marcé, R., & Sabater, S. (2015). Detection and attribution of global change effects on river nutrient dynamics in a large Mediterranean basin. Biogeosciences, 12(13), 4085-4098. doi:10.5194/bg-12-4085-2015 es_ES
dc.description.references Al-Zahrani, M. A., & Abo-Monasar, A. (2015). Urban Residential Water Demand Prediction Based on Artificial Neural Networks and Time Series Models. Water Resources Management, 29(10), 3651-3662. doi:10.1007/s11269-015-1021-z es_ES
dc.description.references Alam, M. J., Goodall, J. L., Bowes, B. D., & Girvetz, E. H. (2017). The Impact of Projected Climate Change Scenarios on Nitrogen Yield at a Regional Scale for the Contiguous United States. JAWRA Journal of the American Water Resources Association, 53(4), 854-870. doi:10.1111/1752-1688.12537 es_ES
dc.description.references Altunkaynak, A. (2006). Forecasting Surface Water Level Fluctuations of Lake Van by Artificial Neural Networks. Water Resources Management, 21(2), 399-408. doi:10.1007/s11269-006-9022-6 es_ES
dc.description.references Barrera-Escoda, A., Gonçalves, M., Guerreiro, D., Cunillera, J., & Baldasano, J. M. (2013). Projections of temperature and precipitation extremes in the North Western Mediterranean Basin by dynamical downscaling of climate scenarios at high resolution (1971–2050). Climatic Change, 122(4), 567-582. doi:10.1007/s10584-013-1027-6 es_ES
dc.description.references Basu, N. B., Destouni, G., Jawitz, J. W., Thompson, S. E., Loukinova, N. V., Darracq, A., … Rao, P. S. C. (2010). Nutrient loads exported from managed catchments reveal emergent biogeochemical stationarity. Geophysical Research Letters, 37(23), n/a-n/a. doi:10.1029/2010gl045168 es_ES
dc.description.references Bi, W., Weng, B., Yuan, Z., Ye, M., Zhang, C., Zhao, Y., … Xu, T. (2018). Evolution Characteristics of Surface Water Quality Due to Climate Change and LUCC under Scenario Simulations: A Case Study in the Luanhe River Basin. International Journal of Environmental Research and Public Health, 15(8), 1724. doi:10.3390/ijerph15081724 es_ES
dc.description.references Bittig, H. C., Steinhoff, T., Claustre, H., Fiedler, B., Williams, N. L., Sauzède, R., … Gattuso, J.-P. (2018). An Alternative to Static Climatologies: Robust Estimation of Open Ocean CO2 Variables and Nutrient Concentrations From T, S, and O2 Data Using Bayesian Neural Networks. Frontiers in Marine Science, 5. doi:10.3389/fmars.2018.00328 es_ES
dc.description.references Brito, A. C., Newton, A., Tett, P., & Fernandes, T. F. (2012). How will shallow coastal lagoons respond to climate change? A modelling investigation. Estuarine, Coastal and Shelf Science, 112, 98-104. doi:10.1016/j.ecss.2011.09.002 es_ES
dc.description.references Modeling Dryness Severity Using Artificial Neural Network at the Okavango Delta, Botswana. (2016). Global NEST Journal, 18(3), 463-481. doi:10.30955/gnj.001731 es_ES
dc.description.references Camargo, J. A., & Alonso, Á. (2006). Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: A global assessment. Environment International, 32(6), 831-849. doi:10.1016/j.envint.2006.05.002 es_ES
dc.description.references Chaudhuri, S., & Dutta, D. (2014). Mann–Kendall trend of pollutants, temperature and humidity over an urban station of India with forecast verification using different ARIMA models. Environmental Monitoring and Assessment, 186(8), 4719-4742. doi:10.1007/s10661-014-3733-6 es_ES
dc.description.references Colella, S., Falcini, F., Rinaldi, E., Sammartino, M., & Santoleri, R. (2016). Mediterranean Ocean Colour Chlorophyll Trends. PLOS ONE, 11(6), e0155756. doi:10.1371/journal.pone.0155756 es_ES
dc.description.references Coppola, E. A., Rana, A. J., Poulton, M. M., Szidarovszky, F., & Uhl, V. W. (2005). A neural network model for predicting aquifer water level elevations. Ground Water, 43(2), 231-241. doi:10.1111/j.1745-6584.2005.0003.x es_ES
dc.description.references Coutinho, F. H., Thompson, C. C., Cabral, A. S., Paranhos, R., Dutilh, B. E., & Thompson, F. L. (2019). Modelling the influence of environmental parameters over marine planktonic microbial communities using artificial neural networks. Science of The Total Environment, 677, 205-214. doi:10.1016/j.scitotenv.2019.04.009 es_ES
dc.description.references Deng, J., Paerl, H. W., Qin, B., Zhang, Y., Zhu, G., Jeppesen, E., … Xu, H. (2018). Climatically-modulated decline in wind speed may strongly affect eutrophication in shallow lakes. Science of The Total Environment, 645, 1361-1370. doi:10.1016/j.scitotenv.2018.07.208 es_ES
dc.description.references Doğan, E., Kocamaz, U. E., Utkucu, M., & Yıldırım, E. (2016). Modelling daily water level fluctuations of Lake Van (Eastern Turkey) using Artificial Neural Networks. Fundamental and Applied Limnology, 187(3), 177-189. doi:10.1127/fal/2015/0736 es_ES
dc.description.references Du, J., Shen, J., Park, K., Wang, Y. P., & Yu, X. (2018). Worsened physical condition due to climate change contributes to the increasing hypoxia in Chesapeake Bay. Science of The Total Environment, 630, 707-717. doi:10.1016/j.scitotenv.2018.02.265 es_ES
dc.description.references Elgaali, E., & Garcia, L. A. (2007). Using Neural Networks to Model the Impacts of Climate Change on Water Supplies. Journal of Water Resources Planning and Management, 133(3), 230-243. doi:10.1061/(asce)0733-9496(2007)133:3(230) es_ES
dc.description.references Flo, E., Garcés, E., Manzanera, M., & Camp, J. (2011). Coastal inshore waters in the NW Mediterranean: Physicochemical and biological characterization and management implications. Estuarine, Coastal and Shelf Science, 93(4), 279-289. doi:10.1016/j.ecss.2011.04.002 es_ES
dc.description.references García-Ruiz, J. M., López-Moreno, J. I., Vicente-Serrano, S. M., Lasanta–Martínez, T., & Beguería, S. (2011). Mediterranean water resources in a global change scenario. Earth-Science Reviews, 105(3-4), 121-139. doi:10.1016/j.earscirev.2011.01.006 es_ES
dc.description.references Garcia-Solsona, E., Garcia-Orellana, J., Masqué, P., Rodellas, V., Mejías, M., Ballesteros, B., & Domínguez, J. A. (2010). Groundwater and nutrient discharge through karstic coastal springs (<i>Castelló</i>, Spain). Biogeosciences, 7(9), 2625-2638. doi:10.5194/bg-7-2625-2010 es_ES
dc.description.references Gardner, M. ., & Dorling, S. . (1998). Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric Environment, 32(14-15), 2627-2636. doi:10.1016/s1352-2310(97)00447-0 es_ES
dc.description.references Genua-Olmedo, A., Alcaraz, C., Caiola, N., & Ibáñez, C. (2016). Sea level rise impacts on rice production: The Ebro Delta as an example. Science of The Total Environment, 571, 1200-1210. doi:10.1016/j.scitotenv.2016.07.136 es_ES
dc.description.references He, J., Valeo, C., Chu, A., & Neumann, N. F. (2010). Stormwater quantity and quality response to climate change using artificial neural networks. Hydrological Processes, 25(8), 1298-1312. doi:10.1002/hyp.7904 es_ES
dc.description.references Herrero, A., Gutiérrez-Cánovas, C., Vigiak, O., Lutz, S., Kumar, R., Gampe, D., … Sabater, S. (2018). Multiple stressor effects on biological quality elements in the Ebro River: Present diagnosis and predicted responses. Science of The Total Environment, 630, 1608-1618. doi:10.1016/j.scitotenv.2018.02.032 es_ES
dc.description.references Herrmann, M., Estournel, C., Adloff, F., & Diaz, F. (2014). Impact of climate change on the northwestern Mediterranean Sea pelagic planktonic ecosystem and associated carbon cycle. Journal of Geophysical Research: Oceans, 119(9), 5815-5836. doi:10.1002/2014jc010016 es_ES
dc.description.references Huo, S., Zhang, H., Ma, C., Xi, B., Zhang, J., He, Z., … Wu, F. (2019). Algae community response to climate change and nutrient loading recorded by sedimentary phytoplankton pigments in the Changtan Reservoir, China. Journal of Hydrology, 571, 311-321. doi:10.1016/j.jhydrol.2019.02.005 es_ES
dc.description.references Jennerjahn, T. C. (2012). Biogeochemical response of tropical coastal systems to present and past environmental change. Earth-Science Reviews, 114(1-2), 19-41. doi:10.1016/j.earscirev.2012.04.005 es_ES
dc.description.references Jiménez, J. A., Valdemoro, H. I., Bosom, E., Sánchez-Arcilla, A., & Nicholls, R. J. (2016). Impacts of sea-level rise-induced erosion on the Catalan coast. Regional Environmental Change, 17(2), 593-603. doi:10.1007/s10113-016-1052-x es_ES
dc.description.references Kitsiou, D., & Karydis, M. (2011). Coastal marine eutrophication assessment: A review on data analysis. Environment International, 37(4), 778-801. doi:10.1016/j.envint.2011.02.004 es_ES
dc.description.references Kohonen, T. (1988). An introduction to neural computing. Neural Networks, 1(1), 3-16. doi:10.1016/0893-6080(88)90020-2 es_ES
dc.description.references Kumar, S., Bhavya, P. S., Ramesh, R., Gupta, G. V. M., Chiriboga, F., Singh, A., … Godhe, A. (2018). Nitrogen uptake potential under different temperature-salinity conditions: Implications for nitrogen cycling under climate change scenarios. Marine Environmental Research, 141, 196-204. doi:10.1016/j.marenvres.2018.09.001 es_ES
dc.description.references Lazzari, P., Mattia, G., Solidoro, C., Salon, S., Crise, A., Zavatarelli, M., … Vichi, M. (2014). The impacts of climate change and environmental management policies on the trophic regimes in the Mediterranean Sea: Scenario analyses. Journal of Marine Systems, 135, 137-149. doi:10.1016/j.jmarsys.2013.06.005 es_ES
dc.description.references Lee, K. H., Jeong, H. J., Lee, K., Franks, P. J. S., Seong, K. A., Lee, S. Y., … Kim, K. Y. (2019). Effects of warming and eutrophication on coastal phytoplankton production. Harmful Algae, 81, 106-118. doi:10.1016/j.hal.2018.11.017 es_ES
dc.description.references Lek, S., & Guégan, J. F. (1999). Artificial neural networks as a tool in ecological modelling, an introduction. Ecological Modelling, 120(2-3), 65-73. doi:10.1016/s0304-3800(99)00092-7 es_ES
dc.description.references Liu, L., Ma, C., Huo, S., Xi, B., He, Z., Zhang, H., … Xia, X. (2018). Impacts of climate change and land use on the development of nutrient criteria. Journal of Hydrology, 563, 533-542. doi:10.1016/j.jhydrol.2018.06.039 es_ES
dc.description.references Liu, Z., Peng, C., Xiang, W., Tian, D., Deng, X., & Zhao, M. (2010). Application of artificial neural networks in global climate change and ecological research: An overview. Chinese Science Bulletin, 55(34), 3853-3863. doi:10.1007/s11434-010-4183-3 es_ES
dc.description.references Macias, D., Garcia-Gorriz, E., & Stips, A. (2018). Deep winter convection and phytoplankton dynamics in the NW Mediterranean Sea under present climate and future (horizon 2030) scenarios. Scientific Reports, 8(1). doi:10.1038/s41598-018-24965-0 es_ES
dc.description.references Mattei, F., Franceschini, S., & Scardi, M. (2018). A depth-resolved artificial neural network model of marine phytoplankton primary production. Ecological Modelling, 382, 51-62. doi:10.1016/j.ecolmodel.2018.05.003 es_ES
dc.description.references Moss, R. H., Edmonds, J. A., Hibbard, K. A., Manning, M. R., Rose, S. K., van Vuuren, D. P., … Wilbanks, T. J. (2010). The next generation of scenarios for climate change research and assessment. Nature, 463(7282), 747-756. doi:10.1038/nature08823 es_ES
dc.description.references Nawi, N. M., Atomi, W. H., & Rehman, M. Z. (2013). The Effect of Data Pre-processing on Optimized Training of Artificial Neural Networks. Procedia Technology, 11, 32-39. doi:10.1016/j.protcy.2013.12.159 es_ES
dc.description.references Ontoria, Y., Gonzalez-Guedes, E., Sanmartí, N., Bernardeau-Esteller, J., Ruiz, J. M., Romero, J., & Pérez, M. (2019). Interactive effects of global warming and eutrophication on a fast-growing Mediterranean seagrass. Marine Environmental Research, 145, 27-38. doi:10.1016/j.marenvres.2019.02.002 es_ES
dc.description.references Paches, M., Aguado, D., Martínez-Guijarro, R., & Romero, I. (2019). Long-term study of seasonal changes in phytoplankton community structure in the western Mediterranean (Valencian Community). Environmental Science and Pollution Research, 26(14), 14266-14276. doi:10.1007/s11356-019-04660-x es_ES
dc.description.references Paulmier, A., & Ruiz-Pino, D. (2009). Oxygen minimum zones (OMZs) in the modern ocean. Progress in Oceanography, 80(3-4), 113-128. doi:10.1016/j.pocean.2008.08.001 es_ES
dc.description.references Pesce, M., Critto, A., Torresan, S., Giubilato, E., Santini, M., Zirino, A., … Marcomini, A. (2018). Modelling climate change impacts on nutrients and primary production in coastal waters. Science of The Total Environment, 628-629, 919-937. doi:10.1016/j.scitotenv.2018.02.131 es_ES
dc.description.references Pianosi, F., Beven, K., Freer, J., Hall, J. W., Rougier, J., Stephenson, D. B., & Wagener, T. (2016). Sensitivity analysis of environmental models: A systematic review with practical workflow. Environmental Modelling & Software, 79, 214-232. doi:10.1016/j.envsoft.2016.02.008 es_ES
dc.description.references Piotrowski, A. P., Napiorkowski, M. J., Napiorkowski, J. J., & Osuch, M. (2015). Comparing various artificial neural network types for water temperature prediction in rivers. Journal of Hydrology, 529, 302-315. doi:10.1016/j.jhydrol.2015.07.044 es_ES
dc.description.references Rabalais, N. N., Turner, R. E., Díaz, R. J., & Justić, D. (2009). Global change and eutrophication of coastal waters. ICES Journal of Marine Science, 66(7), 1528-1537. doi:10.1093/icesjms/fsp047 es_ES
dc.description.references Romanou, A., Tselioudis, G., Zerefos, C. S., Clayson, C.-A., Curry, J. A., & Andersson, A. (2010). Evaporation–Precipitation Variability over the Mediterranean and the Black Seas from Satellite and Reanalysis Estimates. Journal of Climate, 23(19), 5268-5287. doi:10.1175/2010jcli3525.1 es_ES
dc.description.references Romero, I., Pachés, M., Martínez-Guijarro, R., & Ferrer, J. (2013). Glophymed: An index to establish the ecological status for the Water Framework Directive based on phytoplankton in coastal waters. Marine Pollution Bulletin, 75(1-2), 218-223. doi:10.1016/j.marpolbul.2013.07.028 es_ES
dc.description.references Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. Nature, 323(6088), 533-536. doi:10.1038/323533a0 es_ES
dc.description.references Sen, P. K. (1968). Estimates of the Regression Coefficient Based on Kendall’s Tau. Journal of the American Statistical Association, 63(324), 1379-1389. doi:10.1080/01621459.1968.10480934 es_ES
dc.description.references Severin, T., Kessouri, F., Rembauville, M., Sánchez-Pérez, E. D., Oriol, L., Caparros, J., … Conan, P. (2017). Open-ocean convection process: A driver of the winter nutrient supply and the spring phytoplankton distribution in the Northwestern Mediterranean Sea. Journal of Geophysical Research: Oceans, 122(6), 4587-4601. doi:10.1002/2016jc012664 es_ES
dc.description.references Shinn, M. B. (1941). Colorimetric Method for Determination of Nitrate. Industrial & Engineering Chemistry Analytical Edition, 13(1), 33-35. doi:10.1021/i560089a010 es_ES
dc.description.references Sinha, E., Michalak, A. M., Calvin, K. V., & Lawrence, P. J. (2019). Societal decisions about climate mitigation will have dramatic impacts on eutrophication in the 21st century. Nature Communications, 10(1). doi:10.1038/s41467-019-08884-w es_ES
dc.description.references Statham, P. J. (2012). Nutrients in estuaries — An overview and the potential impacts of climate change. Science of The Total Environment, 434, 213-227. doi:10.1016/j.scitotenv.2011.09.088 es_ES
dc.description.references Temino-Boes, R., Romero, I., Pachés, M., Martinez-Guijarro, R., & Romero-Lopez, R. (2019). Anthropogenic impact on nitrification dynamics in coastal waters of the Mediterranean Sea. Marine Pollution Bulletin, 145, 14-22. doi:10.1016/j.marpolbul.2019.05.013 es_ES
dc.description.references Vargas-Yáñez, M., García-Martínez, M. C., Moya, F., Balbín, R., López-Jurado, J. L., Serra, M., … Salat, J. (2017). Updating temperature and salinity mean values and trends in the Western Mediterranean: The RADMED project. Progress in Oceanography, 157, 27-46. doi:10.1016/j.pocean.2017.09.004 es_ES
dc.description.references Voss, M., Bange, H. W., Dippner, J. W., Middelburg, J. J., Montoya, J. P., & Ward, B. (2013). The marine nitrogen cycle: recent discoveries, uncertainties and the potential relevance of climate change. Philosophical Transactions of the Royal Society B: Biological Sciences, 368(1621), 20130121. doi:10.1098/rstb.2013.0121 es_ES
dc.description.references Wagena, M. B., & Easton, Z. M. (2018). Agricultural conservation practices can help mitigate the impact of climate change. Science of The Total Environment, 635, 132-143. doi:10.1016/j.scitotenv.2018.04.110 es_ES
dc.description.references Wang, F., & Polcher, J. (2019). Assessing the freshwater flux from the continents to the Mediterranean Sea. Scientific Reports, 9(1). doi:10.1038/s41598-019-44293-1 es_ES
dc.description.references Wannicke, N., Frey, C., Law, C. S., & Voss, M. (2018). The response of the marine nitrogen cycle to ocean acidification. Global Change Biology, 24(11), 5031-5043. doi:10.1111/gcb.14424 es_ES
dc.description.references Zarzuelo, C., D’Alpaos, A., Carniello, L., López-Ruiz, A., Díez-Minguito, M., & Ortega-Sánchez, M. (2019). Natural and Human-Induced Flow and Sediment Transport within Tidal Creek Networks Influenced by Ocean-Bay Tides. Water, 11(7), 1493. doi:10.3390/w11071493 es_ES
dc.subject.ods 14.- Conservar y utilizar de forma sostenible los océanos, mares y recursos marinos para lograr el desarrollo sostenible es_ES
dc.subject.ods 13.- Tomar medidas urgentes para combatir el cambio climático y sus efectos es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem