Mostrar el registro sencillo del ítem
dc.contributor.author | Temino-Boes, Regina | es_ES |
dc.contributor.author | García-Bartual, Rafael | es_ES |
dc.contributor.author | Romero Gil, Inmaculada | es_ES |
dc.contributor.author | Romero-Lopez, Rabindranarth | es_ES |
dc.date.accessioned | 2021-03-05T04:32:29Z | |
dc.date.available | 2021-03-05T04:32:29Z | |
dc.date.issued | 2021-03-15 | es_ES |
dc.identifier.issn | 0301-4797 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/163190 | |
dc.description.abstract | [EN] Coastal ecosystems are amongst the most vulnerable to climate change, due to their location at the land-sea interface. In coastal waters, the nitrogen cycle can be significantly altered by rising temperatures and other factors derived from climate change, affecting phytoplankton and higher trophic levels. This research analyzes the effect of meteorological variables on dissolved inorganic nitrogen (DIN) species in coastal inshore waters of a Northwestern Mediterranean region under climate change. We built simple mathematical schemes based on artificial neural networks (ANN), trained with field data. Then, we used regional climatic projections for the Spanish Mediterranean coast to provide inputs to the trained ANNs, and thus, allowing the estimation of future DIN trends throughout the 21st century. The results obtained indicate that nitrite and nitrate concentrations are expected to decrease mainly due to rising temperatures and decreasing continental inputs. Major changes are projected for the winter season, driven by a rise in minimum temperatures which decrease the nitrite and nitrate peaks observed at low temperatures. Ammonium concentrations are not expected to undergo a significant annual trend but may either increase or decrease during some months. These results entail a preliminary simplified approach to estimate the impact of meteorological changes on DIN concentrations in coastal waters under climate change. | es_ES |
dc.description.sponsorship | Field data collection was supported by the Valencian Ministry of the Environment, Water, Urban Planning and Housing. The work was partly supported by a Cotutelle PhD scholarship granted by Universitat Politècnica de València. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Journal of Environmental Management | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Artificial neural networks | es_ES |
dc.subject | Climate change | es_ES |
dc.subject | Coastal waters | es_ES |
dc.subject | Dissolved inorganic nitrogen | es_ES |
dc.subject | Mediterranean sea | es_ES |
dc.subject.classification | INGENIERIA HIDRAULICA | es_ES |
dc.subject.classification | TECNOLOGIA DEL MEDIO AMBIENTE | es_ES |
dc.title | Future trends of dissolved inorganic nitrogen concentrations in Northwestern Mediterranean coastal waters under climate change | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.jenvman.2020.111739 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient | es_ES |
dc.description.bibliographicCitation | Temino-Boes, R.; García-Bartual, R.; Romero Gil, I.; Romero-Lopez, R. (2021). Future trends of dissolved inorganic nitrogen concentrations in Northwestern Mediterranean coastal waters under climate change. Journal of Environmental Management. 282:1-12. https://doi.org/10.1016/j.jenvman.2020.111739 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.jenvman.2020.111739 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 12 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 282 | es_ES |
dc.identifier.pmid | 33461817 | es_ES |
dc.relation.pasarela | S\427054 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.description.references | Abdullahi, J., & Elkiran, G. (2017). Prediction of the future impact of climate change on reference evapotranspiration in Cyprus using artificial neural network. Procedia Computer Science, 120, 276-283. doi:10.1016/j.procs.2017.11.239 | es_ES |
dc.description.references | Aguilera, R., Marcé, R., & Sabater, S. (2015). Detection and attribution of global change effects on river nutrient dynamics in a large Mediterranean basin. Biogeosciences, 12(13), 4085-4098. doi:10.5194/bg-12-4085-2015 | es_ES |
dc.description.references | Al-Zahrani, M. A., & Abo-Monasar, A. (2015). Urban Residential Water Demand Prediction Based on Artificial Neural Networks and Time Series Models. Water Resources Management, 29(10), 3651-3662. doi:10.1007/s11269-015-1021-z | es_ES |
dc.description.references | Alam, M. J., Goodall, J. L., Bowes, B. D., & Girvetz, E. H. (2017). The Impact of Projected Climate Change Scenarios on Nitrogen Yield at a Regional Scale for the Contiguous United States. JAWRA Journal of the American Water Resources Association, 53(4), 854-870. doi:10.1111/1752-1688.12537 | es_ES |
dc.description.references | Altunkaynak, A. (2006). Forecasting Surface Water Level Fluctuations of Lake Van by Artificial Neural Networks. Water Resources Management, 21(2), 399-408. doi:10.1007/s11269-006-9022-6 | es_ES |
dc.description.references | Barrera-Escoda, A., Gonçalves, M., Guerreiro, D., Cunillera, J., & Baldasano, J. M. (2013). Projections of temperature and precipitation extremes in the North Western Mediterranean Basin by dynamical downscaling of climate scenarios at high resolution (1971–2050). Climatic Change, 122(4), 567-582. doi:10.1007/s10584-013-1027-6 | es_ES |
dc.description.references | Basu, N. B., Destouni, G., Jawitz, J. W., Thompson, S. E., Loukinova, N. V., Darracq, A., … Rao, P. S. C. (2010). Nutrient loads exported from managed catchments reveal emergent biogeochemical stationarity. Geophysical Research Letters, 37(23), n/a-n/a. doi:10.1029/2010gl045168 | es_ES |
dc.description.references | Bi, W., Weng, B., Yuan, Z., Ye, M., Zhang, C., Zhao, Y., … Xu, T. (2018). Evolution Characteristics of Surface Water Quality Due to Climate Change and LUCC under Scenario Simulations: A Case Study in the Luanhe River Basin. International Journal of Environmental Research and Public Health, 15(8), 1724. doi:10.3390/ijerph15081724 | es_ES |
dc.description.references | Bittig, H. C., Steinhoff, T., Claustre, H., Fiedler, B., Williams, N. L., Sauzède, R., … Gattuso, J.-P. (2018). An Alternative to Static Climatologies: Robust Estimation of Open Ocean CO2 Variables and Nutrient Concentrations From T, S, and O2 Data Using Bayesian Neural Networks. Frontiers in Marine Science, 5. doi:10.3389/fmars.2018.00328 | es_ES |
dc.description.references | Brito, A. C., Newton, A., Tett, P., & Fernandes, T. F. (2012). How will shallow coastal lagoons respond to climate change? A modelling investigation. Estuarine, Coastal and Shelf Science, 112, 98-104. doi:10.1016/j.ecss.2011.09.002 | es_ES |
dc.description.references | Modeling Dryness Severity Using Artificial Neural Network at the Okavango Delta, Botswana. (2016). Global NEST Journal, 18(3), 463-481. doi:10.30955/gnj.001731 | es_ES |
dc.description.references | Camargo, J. A., & Alonso, Á. (2006). Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: A global assessment. Environment International, 32(6), 831-849. doi:10.1016/j.envint.2006.05.002 | es_ES |
dc.description.references | Chaudhuri, S., & Dutta, D. (2014). Mann–Kendall trend of pollutants, temperature and humidity over an urban station of India with forecast verification using different ARIMA models. Environmental Monitoring and Assessment, 186(8), 4719-4742. doi:10.1007/s10661-014-3733-6 | es_ES |
dc.description.references | Colella, S., Falcini, F., Rinaldi, E., Sammartino, M., & Santoleri, R. (2016). Mediterranean Ocean Colour Chlorophyll Trends. PLOS ONE, 11(6), e0155756. doi:10.1371/journal.pone.0155756 | es_ES |
dc.description.references | Coppola, E. A., Rana, A. J., Poulton, M. M., Szidarovszky, F., & Uhl, V. W. (2005). A neural network model for predicting aquifer water level elevations. Ground Water, 43(2), 231-241. doi:10.1111/j.1745-6584.2005.0003.x | es_ES |
dc.description.references | Coutinho, F. H., Thompson, C. C., Cabral, A. S., Paranhos, R., Dutilh, B. E., & Thompson, F. L. (2019). Modelling the influence of environmental parameters over marine planktonic microbial communities using artificial neural networks. Science of The Total Environment, 677, 205-214. doi:10.1016/j.scitotenv.2019.04.009 | es_ES |
dc.description.references | Deng, J., Paerl, H. W., Qin, B., Zhang, Y., Zhu, G., Jeppesen, E., … Xu, H. (2018). Climatically-modulated decline in wind speed may strongly affect eutrophication in shallow lakes. Science of The Total Environment, 645, 1361-1370. doi:10.1016/j.scitotenv.2018.07.208 | es_ES |
dc.description.references | Doğan, E., Kocamaz, U. E., Utkucu, M., & Yıldırım, E. (2016). Modelling daily water level fluctuations of Lake Van (Eastern Turkey) using Artificial Neural Networks. Fundamental and Applied Limnology, 187(3), 177-189. doi:10.1127/fal/2015/0736 | es_ES |
dc.description.references | Du, J., Shen, J., Park, K., Wang, Y. P., & Yu, X. (2018). Worsened physical condition due to climate change contributes to the increasing hypoxia in Chesapeake Bay. Science of The Total Environment, 630, 707-717. doi:10.1016/j.scitotenv.2018.02.265 | es_ES |
dc.description.references | Elgaali, E., & Garcia, L. A. (2007). Using Neural Networks to Model the Impacts of Climate Change on Water Supplies. Journal of Water Resources Planning and Management, 133(3), 230-243. doi:10.1061/(asce)0733-9496(2007)133:3(230) | es_ES |
dc.description.references | Flo, E., Garcés, E., Manzanera, M., & Camp, J. (2011). Coastal inshore waters in the NW Mediterranean: Physicochemical and biological characterization and management implications. Estuarine, Coastal and Shelf Science, 93(4), 279-289. doi:10.1016/j.ecss.2011.04.002 | es_ES |
dc.description.references | García-Ruiz, J. M., López-Moreno, J. I., Vicente-Serrano, S. M., Lasanta–Martínez, T., & Beguería, S. (2011). Mediterranean water resources in a global change scenario. Earth-Science Reviews, 105(3-4), 121-139. doi:10.1016/j.earscirev.2011.01.006 | es_ES |
dc.description.references | Garcia-Solsona, E., Garcia-Orellana, J., Masqué, P., Rodellas, V., Mejías, M., Ballesteros, B., & Domínguez, J. A. (2010). Groundwater and nutrient discharge through karstic coastal springs (<i>Castelló</i>, Spain). Biogeosciences, 7(9), 2625-2638. doi:10.5194/bg-7-2625-2010 | es_ES |
dc.description.references | Gardner, M. ., & Dorling, S. . (1998). Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric Environment, 32(14-15), 2627-2636. doi:10.1016/s1352-2310(97)00447-0 | es_ES |
dc.description.references | Genua-Olmedo, A., Alcaraz, C., Caiola, N., & Ibáñez, C. (2016). Sea level rise impacts on rice production: The Ebro Delta as an example. Science of The Total Environment, 571, 1200-1210. doi:10.1016/j.scitotenv.2016.07.136 | es_ES |
dc.description.references | He, J., Valeo, C., Chu, A., & Neumann, N. F. (2010). Stormwater quantity and quality response to climate change using artificial neural networks. Hydrological Processes, 25(8), 1298-1312. doi:10.1002/hyp.7904 | es_ES |
dc.description.references | Herrero, A., Gutiérrez-Cánovas, C., Vigiak, O., Lutz, S., Kumar, R., Gampe, D., … Sabater, S. (2018). Multiple stressor effects on biological quality elements in the Ebro River: Present diagnosis and predicted responses. Science of The Total Environment, 630, 1608-1618. doi:10.1016/j.scitotenv.2018.02.032 | es_ES |
dc.description.references | Herrmann, M., Estournel, C., Adloff, F., & Diaz, F. (2014). Impact of climate change on the northwestern Mediterranean Sea pelagic planktonic ecosystem and associated carbon cycle. Journal of Geophysical Research: Oceans, 119(9), 5815-5836. doi:10.1002/2014jc010016 | es_ES |
dc.description.references | Huo, S., Zhang, H., Ma, C., Xi, B., Zhang, J., He, Z., … Wu, F. (2019). Algae community response to climate change and nutrient loading recorded by sedimentary phytoplankton pigments in the Changtan Reservoir, China. Journal of Hydrology, 571, 311-321. doi:10.1016/j.jhydrol.2019.02.005 | es_ES |
dc.description.references | Jennerjahn, T. C. (2012). Biogeochemical response of tropical coastal systems to present and past environmental change. Earth-Science Reviews, 114(1-2), 19-41. doi:10.1016/j.earscirev.2012.04.005 | es_ES |
dc.description.references | Jiménez, J. A., Valdemoro, H. I., Bosom, E., Sánchez-Arcilla, A., & Nicholls, R. J. (2016). Impacts of sea-level rise-induced erosion on the Catalan coast. Regional Environmental Change, 17(2), 593-603. doi:10.1007/s10113-016-1052-x | es_ES |
dc.description.references | Kitsiou, D., & Karydis, M. (2011). Coastal marine eutrophication assessment: A review on data analysis. Environment International, 37(4), 778-801. doi:10.1016/j.envint.2011.02.004 | es_ES |
dc.description.references | Kohonen, T. (1988). An introduction to neural computing. Neural Networks, 1(1), 3-16. doi:10.1016/0893-6080(88)90020-2 | es_ES |
dc.description.references | Kumar, S., Bhavya, P. S., Ramesh, R., Gupta, G. V. M., Chiriboga, F., Singh, A., … Godhe, A. (2018). Nitrogen uptake potential under different temperature-salinity conditions: Implications for nitrogen cycling under climate change scenarios. Marine Environmental Research, 141, 196-204. doi:10.1016/j.marenvres.2018.09.001 | es_ES |
dc.description.references | Lazzari, P., Mattia, G., Solidoro, C., Salon, S., Crise, A., Zavatarelli, M., … Vichi, M. (2014). The impacts of climate change and environmental management policies on the trophic regimes in the Mediterranean Sea: Scenario analyses. Journal of Marine Systems, 135, 137-149. doi:10.1016/j.jmarsys.2013.06.005 | es_ES |
dc.description.references | Lee, K. H., Jeong, H. J., Lee, K., Franks, P. J. S., Seong, K. A., Lee, S. Y., … Kim, K. Y. (2019). Effects of warming and eutrophication on coastal phytoplankton production. Harmful Algae, 81, 106-118. doi:10.1016/j.hal.2018.11.017 | es_ES |
dc.description.references | Lek, S., & Guégan, J. F. (1999). Artificial neural networks as a tool in ecological modelling, an introduction. Ecological Modelling, 120(2-3), 65-73. doi:10.1016/s0304-3800(99)00092-7 | es_ES |
dc.description.references | Liu, L., Ma, C., Huo, S., Xi, B., He, Z., Zhang, H., … Xia, X. (2018). Impacts of climate change and land use on the development of nutrient criteria. Journal of Hydrology, 563, 533-542. doi:10.1016/j.jhydrol.2018.06.039 | es_ES |
dc.description.references | Liu, Z., Peng, C., Xiang, W., Tian, D., Deng, X., & Zhao, M. (2010). Application of artificial neural networks in global climate change and ecological research: An overview. Chinese Science Bulletin, 55(34), 3853-3863. doi:10.1007/s11434-010-4183-3 | es_ES |
dc.description.references | Macias, D., Garcia-Gorriz, E., & Stips, A. (2018). Deep winter convection and phytoplankton dynamics in the NW Mediterranean Sea under present climate and future (horizon 2030) scenarios. Scientific Reports, 8(1). doi:10.1038/s41598-018-24965-0 | es_ES |
dc.description.references | Mattei, F., Franceschini, S., & Scardi, M. (2018). A depth-resolved artificial neural network model of marine phytoplankton primary production. Ecological Modelling, 382, 51-62. doi:10.1016/j.ecolmodel.2018.05.003 | es_ES |
dc.description.references | Moss, R. H., Edmonds, J. A., Hibbard, K. A., Manning, M. R., Rose, S. K., van Vuuren, D. P., … Wilbanks, T. J. (2010). The next generation of scenarios for climate change research and assessment. Nature, 463(7282), 747-756. doi:10.1038/nature08823 | es_ES |
dc.description.references | Nawi, N. M., Atomi, W. H., & Rehman, M. Z. (2013). The Effect of Data Pre-processing on Optimized Training of Artificial Neural Networks. Procedia Technology, 11, 32-39. doi:10.1016/j.protcy.2013.12.159 | es_ES |
dc.description.references | Ontoria, Y., Gonzalez-Guedes, E., Sanmartí, N., Bernardeau-Esteller, J., Ruiz, J. M., Romero, J., & Pérez, M. (2019). Interactive effects of global warming and eutrophication on a fast-growing Mediterranean seagrass. Marine Environmental Research, 145, 27-38. doi:10.1016/j.marenvres.2019.02.002 | es_ES |
dc.description.references | Paches, M., Aguado, D., Martínez-Guijarro, R., & Romero, I. (2019). Long-term study of seasonal changes in phytoplankton community structure in the western Mediterranean (Valencian Community). Environmental Science and Pollution Research, 26(14), 14266-14276. doi:10.1007/s11356-019-04660-x | es_ES |
dc.description.references | Paulmier, A., & Ruiz-Pino, D. (2009). Oxygen minimum zones (OMZs) in the modern ocean. Progress in Oceanography, 80(3-4), 113-128. doi:10.1016/j.pocean.2008.08.001 | es_ES |
dc.description.references | Pesce, M., Critto, A., Torresan, S., Giubilato, E., Santini, M., Zirino, A., … Marcomini, A. (2018). Modelling climate change impacts on nutrients and primary production in coastal waters. Science of The Total Environment, 628-629, 919-937. doi:10.1016/j.scitotenv.2018.02.131 | es_ES |
dc.description.references | Pianosi, F., Beven, K., Freer, J., Hall, J. W., Rougier, J., Stephenson, D. B., & Wagener, T. (2016). Sensitivity analysis of environmental models: A systematic review with practical workflow. Environmental Modelling & Software, 79, 214-232. doi:10.1016/j.envsoft.2016.02.008 | es_ES |
dc.description.references | Piotrowski, A. P., Napiorkowski, M. J., Napiorkowski, J. J., & Osuch, M. (2015). Comparing various artificial neural network types for water temperature prediction in rivers. Journal of Hydrology, 529, 302-315. doi:10.1016/j.jhydrol.2015.07.044 | es_ES |
dc.description.references | Rabalais, N. N., Turner, R. E., Díaz, R. J., & Justić, D. (2009). Global change and eutrophication of coastal waters. ICES Journal of Marine Science, 66(7), 1528-1537. doi:10.1093/icesjms/fsp047 | es_ES |
dc.description.references | Romanou, A., Tselioudis, G., Zerefos, C. S., Clayson, C.-A., Curry, J. A., & Andersson, A. (2010). Evaporation–Precipitation Variability over the Mediterranean and the Black Seas from Satellite and Reanalysis Estimates. Journal of Climate, 23(19), 5268-5287. doi:10.1175/2010jcli3525.1 | es_ES |
dc.description.references | Romero, I., Pachés, M., Martínez-Guijarro, R., & Ferrer, J. (2013). Glophymed: An index to establish the ecological status for the Water Framework Directive based on phytoplankton in coastal waters. Marine Pollution Bulletin, 75(1-2), 218-223. doi:10.1016/j.marpolbul.2013.07.028 | es_ES |
dc.description.references | Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. Nature, 323(6088), 533-536. doi:10.1038/323533a0 | es_ES |
dc.description.references | Sen, P. K. (1968). Estimates of the Regression Coefficient Based on Kendall’s Tau. Journal of the American Statistical Association, 63(324), 1379-1389. doi:10.1080/01621459.1968.10480934 | es_ES |
dc.description.references | Severin, T., Kessouri, F., Rembauville, M., Sánchez-Pérez, E. D., Oriol, L., Caparros, J., … Conan, P. (2017). Open-ocean convection process: A driver of the winter nutrient supply and the spring phytoplankton distribution in the Northwestern Mediterranean Sea. Journal of Geophysical Research: Oceans, 122(6), 4587-4601. doi:10.1002/2016jc012664 | es_ES |
dc.description.references | Shinn, M. B. (1941). Colorimetric Method for Determination of Nitrate. Industrial & Engineering Chemistry Analytical Edition, 13(1), 33-35. doi:10.1021/i560089a010 | es_ES |
dc.description.references | Sinha, E., Michalak, A. M., Calvin, K. V., & Lawrence, P. J. (2019). Societal decisions about climate mitigation will have dramatic impacts on eutrophication in the 21st century. Nature Communications, 10(1). doi:10.1038/s41467-019-08884-w | es_ES |
dc.description.references | Statham, P. J. (2012). Nutrients in estuaries — An overview and the potential impacts of climate change. Science of The Total Environment, 434, 213-227. doi:10.1016/j.scitotenv.2011.09.088 | es_ES |
dc.description.references | Temino-Boes, R., Romero, I., Pachés, M., Martinez-Guijarro, R., & Romero-Lopez, R. (2019). Anthropogenic impact on nitrification dynamics in coastal waters of the Mediterranean Sea. Marine Pollution Bulletin, 145, 14-22. doi:10.1016/j.marpolbul.2019.05.013 | es_ES |
dc.description.references | Vargas-Yáñez, M., García-Martínez, M. C., Moya, F., Balbín, R., López-Jurado, J. L., Serra, M., … Salat, J. (2017). Updating temperature and salinity mean values and trends in the Western Mediterranean: The RADMED project. Progress in Oceanography, 157, 27-46. doi:10.1016/j.pocean.2017.09.004 | es_ES |
dc.description.references | Voss, M., Bange, H. W., Dippner, J. W., Middelburg, J. J., Montoya, J. P., & Ward, B. (2013). The marine nitrogen cycle: recent discoveries, uncertainties and the potential relevance of climate change. Philosophical Transactions of the Royal Society B: Biological Sciences, 368(1621), 20130121. doi:10.1098/rstb.2013.0121 | es_ES |
dc.description.references | Wagena, M. B., & Easton, Z. M. (2018). Agricultural conservation practices can help mitigate the impact of climate change. Science of The Total Environment, 635, 132-143. doi:10.1016/j.scitotenv.2018.04.110 | es_ES |
dc.description.references | Wang, F., & Polcher, J. (2019). Assessing the freshwater flux from the continents to the Mediterranean Sea. Scientific Reports, 9(1). doi:10.1038/s41598-019-44293-1 | es_ES |
dc.description.references | Wannicke, N., Frey, C., Law, C. S., & Voss, M. (2018). The response of the marine nitrogen cycle to ocean acidification. Global Change Biology, 24(11), 5031-5043. doi:10.1111/gcb.14424 | es_ES |
dc.description.references | Zarzuelo, C., D’Alpaos, A., Carniello, L., López-Ruiz, A., Díez-Minguito, M., & Ortega-Sánchez, M. (2019). Natural and Human-Induced Flow and Sediment Transport within Tidal Creek Networks Influenced by Ocean-Bay Tides. Water, 11(7), 1493. doi:10.3390/w11071493 | es_ES |
dc.subject.ods | 14.- Conservar y utilizar de forma sostenible los océanos, mares y recursos marinos para lograr el desarrollo sostenible | es_ES |
dc.subject.ods | 13.- Tomar medidas urgentes para combatir el cambio climático y sus efectos | es_ES |