- -

Non-linear and hysteretical finite element formulation applied to magnetostrictive materials

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Non-linear and hysteretical finite element formulation applied to magnetostrictive materials

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Palma, Roberto es_ES
dc.contributor.author Pérez-Aparicio, José L. es_ES
dc.contributor.author Taylor, Robert L. es_ES
dc.date.accessioned 2021-03-05T04:33:02Z
dc.date.available 2021-03-05T04:33:02Z
dc.date.issued 2020-06 es_ES
dc.identifier.issn 0178-7675 es_ES
dc.identifier.uri http://hdl.handle.net/10251/163200
dc.description The final publication is available at link.springer.com. es_ES
dc.description.abstract [EN] Giant magnetostrictive actuators are suitable for applications requiring large mechanical displacements under low magnetic fields; for instance Terfenol-D made out of rare earth-iron materials can produce important strains. But these actuators exhibit hysteretic non-linear behavior, making it very difficult to experimentally characterize them. Therefore, sophisticated numerical algorithms to develop computational tools are necessary. In this work, theoretical and numerical formulations within the finite element method are developed to simulate magnetostriction. Theoretically, within the framework of non-equilibrium thermodynamics, the hysteresis is introduced by the Debye-memory relaxation. Numerically, the main novelty is the time integration, coupled Newmark-beta (for mechanical) and convolution integrals (for magnetic constitutive equations); the non-linearity is solved with the standard Newton-Raphson algorithm. Constitutive non-linearities are incorporated with the Maxwell stress tensor, quadratically dependent on the magnetic field. The numerical code is validated using analytical and experimental solutions; several examples are presented to demonstrate the capabilities of the present formulation. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Computational Mechanics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Finite element method es_ES
dc.subject Magnetostrictive es_ES
dc.subject Maxwell stress tensor es_ES
dc.subject Magnetic Debye memory es_ES
dc.subject Convolution integrals es_ES
dc.subject Hysteresis es_ES
dc.subject.classification MECANICA DE LOS MEDIOS CONTINUOS Y TEORIA DE ESTRUCTURAS es_ES
dc.title Non-linear and hysteretical finite element formulation applied to magnetostrictive materials es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s00466-020-01828-y es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Mecánica de los Medios Continuos y Teoría de Estructuras - Departament de Mecànica dels Medis Continus i Teoria d'Estructures es_ES
dc.description.bibliographicCitation Palma, R.; Pérez-Aparicio, JL.; Taylor, RL. (2020). Non-linear and hysteretical finite element formulation applied to magnetostrictive materials. Computational Mechanics. 65(6):1433-1445. https://doi.org/10.1007/s00466-020-01828-y es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s00466-020-01828-y es_ES
dc.description.upvformatpinicio 1433 es_ES
dc.description.upvformatpfin 1445 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 65 es_ES
dc.description.issue 6 es_ES
dc.relation.pasarela S\418140 es_ES
dc.description.references Orszulik RR, Gabbert U (2015) An interface between Abaqus and Simulink for high-fidelity simulations of smart structures. IEEE/ASME Trans Mechatron 21(2):879–887 es_ES
dc.description.references Melchor J, Rus G (2014) Torsional ultrasonic transducer computational design optimization. Ultrasonics 54(7):1950–1962 es_ES
dc.description.references Khan FU, Ahmad I (2016) Review of energy harvesters utilizing bridge vibrations. Shock Vib 2016:1–21 es_ES
dc.description.references Melingui A, Lakhal O, Daachi B, Bosco J, Merzouki R (2015) Adaptive neural network control of a compact bionic handling arm. IEEE/ASME Trans Mechatron 20(6):2862–2875 es_ES
dc.description.references Anjanappa M, Bi J (1994) A theoretical and experimental study of magnetostrictive mini-actuators. Smart Mater Struct 3:83–91 es_ES
dc.description.references Anjanappa M, Bi J (1994) Magnetostrictive mini actuators for smart structure applications. Smart Mater Struct 3:383–390 es_ES
dc.description.references Venkataraman R, Rameau J, Krishnaprasad PS. Characterization of an ETREMA MP 50/6 magnetostrictive actuator, TR 98-1. Technical report of the Institute for System Research, University of Maryland at College Park es_ES
dc.description.references Li Z, Zhang X, Gu GY, Chen X, Su CY (2016) A comprehensive dynamic model for magnetostrictive actuators considering different input frequencies with mechanical loads. IEEE Trans Ind Inform 12(3):980–990 es_ES
dc.description.references Pérez-Aparicio JL, Sosa H (2004) A continuum three-dimensional, fully coupled, dynamic, non-linear finite element formulation for magnetostrictive materials. Smart Mater Struct 13:493–502 es_ES
dc.description.references Perez-Aparicio JL, Palma R, Taylor RL (2016) Multiphysics and thermodynamic formulations for equilibrium and non-equilibrium interactions: non-linear finite elements applied to multi-coupled active materials. Arch Comput Methods Engieering 23(3):535–583 es_ES
dc.description.references Kannan KS, Dasgupta A (1997) A non-linear Galerkin finite-element theory for modeling magnetostrictive smart structures. Smart Mater Struct 6:341–350 es_ES
dc.description.references Kiang J, Tong L (2010) Nonlinear magneto-mechanical finite element analysis of Ni–Mn–Ga single crystals. Smart Mater Struct 19:1–17 es_ES
dc.description.references Zhou P (2015) On the coupling effects between elastic and electromagnetic fields from the perspective of conservation of energy. arXiv:1512.04487 es_ES
dc.description.references Natale C, Velardi F, Visone C (2001) Identification and compensation of Preisach hysteresis models for magnetostrictive actuators. Phys B Condens Matter 306(1):161–165 es_ES
dc.description.references Kaltenbacher M, Meiler M, Ertl M (2009) Physical modeling and numerical computation of magnetostriction. Int J Comput Math Electr Electron Eng 28(4):819–832 es_ES
dc.description.references Linnemann K, Klinkel S, Wagner W (2009) A constitutive model for magnetostrictive and piezoelectric materials. Int J Solids Struct 46:1149–1166 es_ES
dc.description.references de Groot SR, Mazur P (1984) Non-equilibrium thermodynamics. Dover, Mineola es_ES
dc.description.references Pérez-Aparicio JL, Palma R, Moreno-Navarro P (2016) Elasto-thermoelectric non-linear, fully coupled, and dynamic finite element analysis of pulsed thermoelectrics. Appl Therm Eng 107:398–409 es_ES
dc.description.references Taylor RL (2010) FEAP a finite element analysis program: user manual. University of California, Berkeley es_ES
dc.description.references Jiménez JL, Campos I, López-Mariño MA (2013) Maxwell’s equations in material media, momentum balance equations and force densities associated with them. Eur Phys J Plus 128(46):1–6 es_ES
dc.description.references Sardanashvily G (2016) Noether’s theorems. Applications in mechanics and field theory. Springer, Berlin es_ES
dc.description.references Landau LD, Lifshitz EM (1984) Electrodynamics of continuous media. Pergamon Press Ltd, Oxford es_ES
dc.description.references Juretschke HJ (1977) Simple derivation of the Maxwell stress tensor and electrostictive effects in crystals. Am J Phys 45(3):277–280 es_ES
dc.description.references Palma R, Pérez-Aparicio JL, Taylor RL (2019) On the non-symmetry of the Maxwell stress tensor: a generalized continuum mechanics approach. Int J Eng Sci (submitted) es_ES
dc.description.references McMeeking RM, Landis CM (2005) Electrostatic forces and stored energy for deformable dielectric materials. J Appl Mech 72:581–590 es_ES
dc.description.references Reitz JR, Milford FJ, Christy RW (1960) Foundations of electromagnetic theory. Addison-Wesley Publishing Company, Inc, Boston es_ES
dc.description.references Palma R, Pérez-Aparicio JL, Taylor RL (2017) Dissipative finite element formulation applied to piezoelectric materials with Debye memory. IEEE/ASME Trans Mechatron 23(2):856–863 es_ES
dc.description.references Zienkiewicz OC, Taylor RL, Zhu JZ (2013) The finite element method: its basis and fundamentals, 7th edn. Elsevier, Oxford es_ES
dc.description.references Moffett MB, Clark AE, Wun-Fogle M, Linberg J, Teter JP, McLaughlin EA (1991) Characterization of Terfenol-D for magnetostrictive transducers. J Acoust Soc Am 89(3):1448–1455 es_ES
dc.description.references Telesnin RV, Shishkov AG (1958) Effect of magnetic viscosity on the frequency properties of ferrites. Sov Phys JETP 6(33):649–652 es_ES
dc.description.references Cole KS, Cole RH (1941) Dispersion and absorption in dielectrics—I alternating current characteristics. J Chem Phys 9(4):341–352 es_ES
dc.description.references Gualdi AJ, Zabotto ML, Garcia D, Bhalla A, Gu R, de Camargo PC, de Oliveira AJ (2016) Understanding the dynamic magnetization process for the magnetoelectric effect in multiferroic composites. J Appl Phys 119(12):4110 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem