- -

Non-linear and hysteretical finite element formulation applied to magnetostrictive materials

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Non-linear and hysteretical finite element formulation applied to magnetostrictive materials

Mostrar el registro completo del ítem

Palma, R.; Pérez-Aparicio, JL.; Taylor, RL. (2020). Non-linear and hysteretical finite element formulation applied to magnetostrictive materials. Computational Mechanics. 65(6):1433-1445. https://doi.org/10.1007/s00466-020-01828-y

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/163200

Ficheros en el ítem

Metadatos del ítem

Título: Non-linear and hysteretical finite element formulation applied to magnetostrictive materials
Autor: Palma, Roberto Pérez-Aparicio, José L. Taylor, Robert L.
Entidad UPV: Universitat Politècnica de València. Departamento de Mecánica de los Medios Continuos y Teoría de Estructuras - Departament de Mecànica dels Medis Continus i Teoria d'Estructures
Fecha difusión:
Resumen:
[EN] Giant magnetostrictive actuators are suitable for applications requiring large mechanical displacements under low magnetic fields; for instance Terfenol-D made out of rare earth-iron materials can produce important ...[+]
Palabras clave: Finite element method , Magnetostrictive , Maxwell stress tensor , Magnetic Debye memory , Convolution integrals , Hysteresis
Derechos de uso: Reserva de todos los derechos
Fuente:
Computational Mechanics. (issn: 0178-7675 )
DOI: 10.1007/s00466-020-01828-y
Editorial:
Springer-Verlag
Versión del editor: https://doi.org/10.1007/s00466-020-01828-y
Descripción: The final publication is available at link.springer.com.
Tipo: Artículo

References

Orszulik RR, Gabbert U (2015) An interface between Abaqus and Simulink for high-fidelity simulations of smart structures. IEEE/ASME Trans Mechatron 21(2):879–887

Melchor J, Rus G (2014) Torsional ultrasonic transducer computational design optimization. Ultrasonics 54(7):1950–1962

Khan FU, Ahmad I (2016) Review of energy harvesters utilizing bridge vibrations. Shock Vib 2016:1–21 [+]
Orszulik RR, Gabbert U (2015) An interface between Abaqus and Simulink for high-fidelity simulations of smart structures. IEEE/ASME Trans Mechatron 21(2):879–887

Melchor J, Rus G (2014) Torsional ultrasonic transducer computational design optimization. Ultrasonics 54(7):1950–1962

Khan FU, Ahmad I (2016) Review of energy harvesters utilizing bridge vibrations. Shock Vib 2016:1–21

Melingui A, Lakhal O, Daachi B, Bosco J, Merzouki R (2015) Adaptive neural network control of a compact bionic handling arm. IEEE/ASME Trans Mechatron 20(6):2862–2875

Anjanappa M, Bi J (1994) A theoretical and experimental study of magnetostrictive mini-actuators. Smart Mater Struct 3:83–91

Anjanappa M, Bi J (1994) Magnetostrictive mini actuators for smart structure applications. Smart Mater Struct 3:383–390

Venkataraman R, Rameau J, Krishnaprasad PS. Characterization of an ETREMA MP 50/6 magnetostrictive actuator, TR 98-1. Technical report of the Institute for System Research, University of Maryland at College Park

Li Z, Zhang X, Gu GY, Chen X, Su CY (2016) A comprehensive dynamic model for magnetostrictive actuators considering different input frequencies with mechanical loads. IEEE Trans Ind Inform 12(3):980–990

Pérez-Aparicio JL, Sosa H (2004) A continuum three-dimensional, fully coupled, dynamic, non-linear finite element formulation for magnetostrictive materials. Smart Mater Struct 13:493–502

Perez-Aparicio JL, Palma R, Taylor RL (2016) Multiphysics and thermodynamic formulations for equilibrium and non-equilibrium interactions: non-linear finite elements applied to multi-coupled active materials. Arch Comput Methods Engieering 23(3):535–583

Kannan KS, Dasgupta A (1997) A non-linear Galerkin finite-element theory for modeling magnetostrictive smart structures. Smart Mater Struct 6:341–350

Kiang J, Tong L (2010) Nonlinear magneto-mechanical finite element analysis of Ni–Mn–Ga single crystals. Smart Mater Struct 19:1–17

Zhou P (2015) On the coupling effects between elastic and electromagnetic fields from the perspective of conservation of energy. arXiv:1512.04487

Natale C, Velardi F, Visone C (2001) Identification and compensation of Preisach hysteresis models for magnetostrictive actuators. Phys B Condens Matter 306(1):161–165

Kaltenbacher M, Meiler M, Ertl M (2009) Physical modeling and numerical computation of magnetostriction. Int J Comput Math Electr Electron Eng 28(4):819–832

Linnemann K, Klinkel S, Wagner W (2009) A constitutive model for magnetostrictive and piezoelectric materials. Int J Solids Struct 46:1149–1166

de Groot SR, Mazur P (1984) Non-equilibrium thermodynamics. Dover, Mineola

Pérez-Aparicio JL, Palma R, Moreno-Navarro P (2016) Elasto-thermoelectric non-linear, fully coupled, and dynamic finite element analysis of pulsed thermoelectrics. Appl Therm Eng 107:398–409

Taylor RL (2010) FEAP a finite element analysis program: user manual. University of California, Berkeley

Jiménez JL, Campos I, López-Mariño MA (2013) Maxwell’s equations in material media, momentum balance equations and force densities associated with them. Eur Phys J Plus 128(46):1–6

Sardanashvily G (2016) Noether’s theorems. Applications in mechanics and field theory. Springer, Berlin

Landau LD, Lifshitz EM (1984) Electrodynamics of continuous media. Pergamon Press Ltd, Oxford

Juretschke HJ (1977) Simple derivation of the Maxwell stress tensor and electrostictive effects in crystals. Am J Phys 45(3):277–280

Palma R, Pérez-Aparicio JL, Taylor RL (2019) On the non-symmetry of the Maxwell stress tensor: a generalized continuum mechanics approach. Int J Eng Sci (submitted)

McMeeking RM, Landis CM (2005) Electrostatic forces and stored energy for deformable dielectric materials. J Appl Mech 72:581–590

Reitz JR, Milford FJ, Christy RW (1960) Foundations of electromagnetic theory. Addison-Wesley Publishing Company, Inc, Boston

Palma R, Pérez-Aparicio JL, Taylor RL (2017) Dissipative finite element formulation applied to piezoelectric materials with Debye memory. IEEE/ASME Trans Mechatron 23(2):856–863

Zienkiewicz OC, Taylor RL, Zhu JZ (2013) The finite element method: its basis and fundamentals, 7th edn. Elsevier, Oxford

Moffett MB, Clark AE, Wun-Fogle M, Linberg J, Teter JP, McLaughlin EA (1991) Characterization of Terfenol-D for magnetostrictive transducers. J Acoust Soc Am 89(3):1448–1455

Telesnin RV, Shishkov AG (1958) Effect of magnetic viscosity on the frequency properties of ferrites. Sov Phys JETP 6(33):649–652

Cole KS, Cole RH (1941) Dispersion and absorption in dielectrics—I alternating current characteristics. J Chem Phys 9(4):341–352

Gualdi AJ, Zabotto ML, Garcia D, Bhalla A, Gu R, de Camargo PC, de Oliveira AJ (2016) Understanding the dynamic magnetization process for the magnetoelectric effect in multiferroic composites. J Appl Phys 119(12):4110

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem