- -

Radial turbine sound and noise characterisation with acoustic transfer matrices by means of fast one-dimensional models

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Radial turbine sound and noise characterisation with acoustic transfer matrices by means of fast one-dimensional models

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Torregrosa, A. J. es_ES
dc.contributor.author García-Cuevas González, Luis Miguel es_ES
dc.contributor.author Inhestern, Lukas Benjamin es_ES
dc.contributor.author Soler-Blanco, Pablo es_ES
dc.date.accessioned 2021-03-05T04:33:14Z
dc.date.available 2021-03-05T04:33:14Z
dc.date.issued 2021-04-01 es_ES
dc.identifier.issn 1468-0874 es_ES
dc.identifier.uri http://hdl.handle.net/10251/163203
dc.description This is the author's version of a work that was accepted for publication in International Journal of Engine Research. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published as https://doi.org/10.1177/1468087419889429. es_ES
dc.description.abstract [EN] Estimating correctly the turbine acoustics can be valuable during the engine design stage; in fact, it can lead to a more optimised design of the silencer and aftertreatment, as well as to better prediction of the scavenging effects. However, obtaining the sound and noise emissions of radial turbocharger turbines with low computational costs can be challenging. To consider these effects in a time-efficient manner, the acoustic response of single-entry radial turbines can be characterised by means of acoustic transfer matrices that change with the operating conditions. Exploiting the different time-scales of the acoustic phenomena and the change in the operating point of the turbine, lookup tables of acoustic transfer matrices can be computed. Then, the obtained characterisation can be used in mean-value engine models. This article presents a method for generating these lookup tables by means of fast one-dimensional simulations of thoroughly validated fidelity, in terms of both acoustics and extrapolation capabilities. Due to the inherent behaviour of radial turbines, the number of computations needed to fill the lookup tables is relatively small, so the method can be used as a simple preprocessing phase before mean-value simulation campaigns. es_ES
dc.language Inglés es_ES
dc.publisher SAGE Publications es_ES
dc.relation.ispartof International Journal of Engine Research es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Turbocharger es_ES
dc.subject Acoustic transfer matrix es_ES
dc.subject One-dimensional model es_ES
dc.subject Radial turbine es_ES
dc.subject Noise es_ES
dc.subject Transient flow es_ES
dc.subject.classification INGENIERIA AEROESPACIAL es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Radial turbine sound and noise characterisation with acoustic transfer matrices by means of fast one-dimensional models es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1177/1468087419889429 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//FPI-2017-S2-1428/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-06-18/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//SP20180314/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics es_ES
dc.description.bibliographicCitation Torregrosa, AJ.; García-Cuevas González, LM.; Inhestern, LB.; Soler-Blanco, P. (2021). Radial turbine sound and noise characterisation with acoustic transfer matrices by means of fast one-dimensional models. International Journal of Engine Research. 22(4):1312-1328. https://doi.org/10.1177/1468087419889429 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1177/1468087419889429 es_ES
dc.description.upvformatpinicio 1312 es_ES
dc.description.upvformatpfin 1328 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 22 es_ES
dc.description.issue 4 es_ES
dc.relation.pasarela S\398278 es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Broatch, A., Galindo, J., Navarro, R., & García-Tíscar, J. (2014). Methodology for experimental validation of a CFD model for predicting noise generation in centrifugal compressors. International Journal of Heat and Fluid Flow, 50, 134-144. doi:10.1016/j.ijheatfluidflow.2014.06.006 es_ES
dc.description.references Galindo, J., Tiseira, A., Navarro, R., Tarí, D., & Meano, C. M. (2017). Effect of the inlet geometry on performance, surge margin and noise emission of an automotive turbocharger compressor. Applied Thermal Engineering, 110, 875-882. doi:10.1016/j.applthermaleng.2016.08.099 es_ES
dc.description.references Peat, K. S., Torregrosa, A. J., Broatch, A., & Fernández, T. (2006). An investigation into the passive acoustic effect of the turbine in an automotive turbocharger. Journal of Sound and Vibration, 295(1-2), 60-75. doi:10.1016/j.jsv.2005.11.033 es_ES
dc.description.references Torregrosa, A., Galindo, J., Serrano, J. R., & Tiseira, A. (2009). A Procedure for the Unsteady Characterization of Turbochargers in Reciprocating Internal Combustion Engines. Fluid Machinery and Fluid Mechanics, 72-79. doi:10.1007/978-3-540-89749-1_10 es_ES
dc.description.references Torregrosa, A. J., Broatch, A., Navarro, R., & García-Tíscar, J. (2014). Acoustic characterization of automotive turbocompressors. International Journal of Engine Research, 16(1), 31-37. doi:10.1177/1468087414562866 es_ES
dc.description.references Broatch, A., Galindo, J., Navarro, R., García-Tíscar, J., Daglish, A., & Sharma, R. K. (2015). Simulations and measurements of automotive turbocharger compressor whoosh noise. Engineering Applications of Computational Fluid Mechanics, 9(1), 12-20. doi:10.1080/19942060.2015.1004788 es_ES
dc.description.references Broatch, A., Galindo, J., Navarro, R., & García-Tíscar, J. (2016). Numerical and experimental analysis of automotive turbocharger compressor aeroacoustics at different operating conditions. International Journal of Heat and Fluid Flow, 61, 245-255. doi:10.1016/j.ijheatfluidflow.2016.04.003 es_ES
dc.description.references Wallace, F. J., & Adgey, J. (1967). Paper 1: Theoretical Assessment of the Non-Steady Flow Performance of Inward Radial Flow Turbines. Proceedings of the Institution of Mechanical Engineers, Conference Proceedings, 182(8), 22-36. doi:10.1243/pime_conf_1967_182_211_02 es_ES
dc.description.references Piscaglia, F., Onorati, A., Marelli, S., & Capobianco, M. (2018). A detailed one-dimensional model to predict the unsteady behavior of turbocharger turbines for internal combustion engine applications. International Journal of Engine Research, 20(3), 327-349. doi:10.1177/1468087417752525 es_ES
dc.description.references Galindo, J., Fajardo, P., Navarro, R., & García-Cuevas, L. M. (2013). Characterization of a radial turbocharger turbine in pulsating flow by means of CFD and its application to engine modeling. Applied Energy, 103, 116-127. doi:10.1016/j.apenergy.2012.09.013 es_ES
dc.description.references Galindo, J., Tiseira, A., Fajardo, P., & García-Cuevas, L. M. (2014). Development and validation of a radial variable geometry turbine model for transient pulsating flow applications. Energy Conversion and Management, 85, 190-203. doi:10.1016/j.enconman.2014.05.072 es_ES
dc.description.references Avola, C., Copeland, C., Romagnoli, A., Burke, R., & Dimitriou, P. (2017). Attempt to correlate simulations and measurements of turbine performance under pulsating flows for automotive turbochargers. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 233(2), 174-187. doi:10.1177/0954407017739123 es_ES
dc.description.references Galindo, J., Climent, H., Tiseira, A., & García-Cuevas, L. M. (2016). Effect of the numerical scheme resolution on quasi-2D simulation of an automotive radial turbine under highly pulsating flow. Journal of Computational and Applied Mathematics, 291, 112-126. doi:10.1016/j.cam.2015.02.025 es_ES
dc.description.references Serrano, J. R., Arnau, F. J., García-Cuevas, L. M., Dombrovsky, A., & Tartoussi, H. (2016). Development and validation of a radial turbine efficiency and mass flow model at design and off-design conditions. Energy Conversion and Management, 128, 281-293. doi:10.1016/j.enconman.2016.09.032 es_ES
dc.description.references Galindo, J., Navarro, R., García-Cuevas, L. M., Tarí, D., Tartoussi, H., & Guilain, S. (2018). A zonal approach for estimating pressure ratio at compressor extreme off-design conditions. International Journal of Engine Research, 20(4), 393-404. doi:10.1177/1468087418754899 es_ES
dc.description.references Payri, F., Olmeda, P., Arnau, F. J., Dombrovsky, A., & Smith, L. (2014). External heat losses in small turbochargers: Model and experiments. Energy, 71, 534-546. doi:10.1016/j.energy.2014.04.096 es_ES
dc.description.references Serrano, J. R., Olmeda, P., Arnau, F. J., Dombrovsky, A., & Smith, L. (2015). Turbocharger heat transfer and mechanical losses influence in predicting engines performance by using one-dimensional simulation codes. Energy, 86, 204-218. doi:10.1016/j.energy.2015.03.130 es_ES
dc.description.references Serrano, J. R., Olmeda, P., Tiseira, A., García-Cuevas, L. M., & Lefebvre, A. (2013). Theoretical and experimental study of mechanical losses in automotive turbochargers. Energy, 55, 888-898. doi:10.1016/j.energy.2013.04.042 es_ES
dc.description.references Piñero, G., Vergara, L., Desantes, J. M., & Broatch, A. (2000). Estimation of velocity fluctuation in internal combustion engine exhaust systems through beamforming techniques. Measurement Science and Technology, 11(11), 1585-1595. doi:10.1088/0957-0233/11/11/307 es_ES
dc.description.references Galindo, J., Serrano, J. R., Arnau, F. J., & Piqueras, P. (2009). Description of a Semi-Independent Time Discretization Methodology for a One-Dimensional Gas Dynamics Model. Journal of Engineering for Gas Turbines and Power, 131(3). doi:10.1115/1.2983015 es_ES
dc.description.references Serrano, J. R., Arnau, F. J., Dolz, V., Tiseira, A., & Cervelló, C. (2008). A model of turbocharger radial turbines appropriate to be used in zero- and one-dimensional gas dynamics codes for internal combustion engines modelling. Energy Conversion and Management, 49(12), 3729-3745. doi:10.1016/j.enconman.2008.06.031 es_ES
dc.description.references Serrano, J. R., Tiseira, A., García-Cuevas, L. M., Inhestern, L. B., & Tartoussi, H. (2017). Radial turbine performance measurement under extreme off-design conditions. Energy, 125, 72-84. doi:10.1016/j.energy.2017.02.118 es_ES
dc.description.references Welch, P. (1967). The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms. IEEE Transactions on Audio and Electroacoustics, 15(2), 70-73. doi:10.1109/tau.1967.1161901 es_ES
dc.description.references Serrano, J. R., Arnau, F. J., García-Cuevas, L. M., & Inhestern, L. B. (2019). An innovative losses model for efficiency map fitting of vaneless and variable vaned radial turbines extrapolating towards extreme off-design conditions. Energy, 180, 626-639. doi:10.1016/j.energy.2019.05.062 es_ES
dc.description.references Van Leer, B. (1974). Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme. Journal of Computational Physics, 14(4), 361-370. doi:10.1016/0021-9991(74)90019-9 es_ES
dc.description.references Toro, E. F., Spruce, M., & Speares, W. (1994). Restoration of the contact surface in the HLL-Riemann solver. Shock Waves, 4(1), 25-34. doi:10.1007/bf01414629 es_ES
dc.description.references Courant, R., Friedrichs, K., & Lewy, H. (1928). �ber die partiellen Differenzengleichungen der mathematischen Physik. Mathematische Annalen, 100(1), 32-74. doi:10.1007/bf01448839 es_ES
dc.subject.ods 07.- Asegurar el acceso a energías asequibles, fiables, sostenibles y modernas para todos es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem