Broatch, A., Galindo, J., Navarro, R., & García-Tíscar, J. (2014). Methodology for experimental validation of a CFD model for predicting noise generation in centrifugal compressors. International Journal of Heat and Fluid Flow, 50, 134-144. doi:10.1016/j.ijheatfluidflow.2014.06.006
Galindo, J., Tiseira, A., Navarro, R., Tarí, D., & Meano, C. M. (2017). Effect of the inlet geometry on performance, surge margin and noise emission of an automotive turbocharger compressor. Applied Thermal Engineering, 110, 875-882. doi:10.1016/j.applthermaleng.2016.08.099
Peat, K. S., Torregrosa, A. J., Broatch, A., & Fernández, T. (2006). An investigation into the passive acoustic effect of the turbine in an automotive turbocharger. Journal of Sound and Vibration, 295(1-2), 60-75. doi:10.1016/j.jsv.2005.11.033
[+]
Broatch, A., Galindo, J., Navarro, R., & García-Tíscar, J. (2014). Methodology for experimental validation of a CFD model for predicting noise generation in centrifugal compressors. International Journal of Heat and Fluid Flow, 50, 134-144. doi:10.1016/j.ijheatfluidflow.2014.06.006
Galindo, J., Tiseira, A., Navarro, R., Tarí, D., & Meano, C. M. (2017). Effect of the inlet geometry on performance, surge margin and noise emission of an automotive turbocharger compressor. Applied Thermal Engineering, 110, 875-882. doi:10.1016/j.applthermaleng.2016.08.099
Peat, K. S., Torregrosa, A. J., Broatch, A., & Fernández, T. (2006). An investigation into the passive acoustic effect of the turbine in an automotive turbocharger. Journal of Sound and Vibration, 295(1-2), 60-75. doi:10.1016/j.jsv.2005.11.033
Torregrosa, A., Galindo, J., Serrano, J. R., & Tiseira, A. (2009). A Procedure for the Unsteady Characterization of Turbochargers in Reciprocating Internal Combustion Engines. Fluid Machinery and Fluid Mechanics, 72-79. doi:10.1007/978-3-540-89749-1_10
Torregrosa, A. J., Broatch, A., Navarro, R., & García-Tíscar, J. (2014). Acoustic characterization of automotive turbocompressors. International Journal of Engine Research, 16(1), 31-37. doi:10.1177/1468087414562866
Broatch, A., Galindo, J., Navarro, R., García-Tíscar, J., Daglish, A., & Sharma, R. K. (2015). Simulations and measurements of automotive turbocharger compressor whoosh noise. Engineering Applications of Computational Fluid Mechanics, 9(1), 12-20. doi:10.1080/19942060.2015.1004788
Broatch, A., Galindo, J., Navarro, R., & García-Tíscar, J. (2016). Numerical and experimental analysis of automotive turbocharger compressor aeroacoustics at different operating conditions. International Journal of Heat and Fluid Flow, 61, 245-255. doi:10.1016/j.ijheatfluidflow.2016.04.003
Wallace, F. J., & Adgey, J. (1967). Paper 1: Theoretical Assessment of the Non-Steady Flow Performance of Inward Radial Flow Turbines. Proceedings of the Institution of Mechanical Engineers, Conference Proceedings, 182(8), 22-36. doi:10.1243/pime_conf_1967_182_211_02
Piscaglia, F., Onorati, A., Marelli, S., & Capobianco, M. (2018). A detailed one-dimensional model to predict the unsteady behavior of turbocharger turbines for internal combustion engine applications. International Journal of Engine Research, 20(3), 327-349. doi:10.1177/1468087417752525
Galindo, J., Fajardo, P., Navarro, R., & García-Cuevas, L. M. (2013). Characterization of a radial turbocharger turbine in pulsating flow by means of CFD and its application to engine modeling. Applied Energy, 103, 116-127. doi:10.1016/j.apenergy.2012.09.013
Galindo, J., Tiseira, A., Fajardo, P., & García-Cuevas, L. M. (2014). Development and validation of a radial variable geometry turbine model for transient pulsating flow applications. Energy Conversion and Management, 85, 190-203. doi:10.1016/j.enconman.2014.05.072
Avola, C., Copeland, C., Romagnoli, A., Burke, R., & Dimitriou, P. (2017). Attempt to correlate simulations and measurements of turbine performance under pulsating flows for automotive turbochargers. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 233(2), 174-187. doi:10.1177/0954407017739123
Galindo, J., Climent, H., Tiseira, A., & García-Cuevas, L. M. (2016). Effect of the numerical scheme resolution on quasi-2D simulation of an automotive radial turbine under highly pulsating flow. Journal of Computational and Applied Mathematics, 291, 112-126. doi:10.1016/j.cam.2015.02.025
Serrano, J. R., Arnau, F. J., García-Cuevas, L. M., Dombrovsky, A., & Tartoussi, H. (2016). Development and validation of a radial turbine efficiency and mass flow model at design and off-design conditions. Energy Conversion and Management, 128, 281-293. doi:10.1016/j.enconman.2016.09.032
Galindo, J., Navarro, R., García-Cuevas, L. M., Tarí, D., Tartoussi, H., & Guilain, S. (2018). A zonal approach for estimating pressure ratio at compressor extreme off-design conditions. International Journal of Engine Research, 20(4), 393-404. doi:10.1177/1468087418754899
Payri, F., Olmeda, P., Arnau, F. J., Dombrovsky, A., & Smith, L. (2014). External heat losses in small turbochargers: Model and experiments. Energy, 71, 534-546. doi:10.1016/j.energy.2014.04.096
Serrano, J. R., Olmeda, P., Arnau, F. J., Dombrovsky, A., & Smith, L. (2015). Turbocharger heat transfer and mechanical losses influence in predicting engines performance by using one-dimensional simulation codes. Energy, 86, 204-218. doi:10.1016/j.energy.2015.03.130
Serrano, J. R., Olmeda, P., Tiseira, A., García-Cuevas, L. M., & Lefebvre, A. (2013). Theoretical and experimental study of mechanical losses in automotive turbochargers. Energy, 55, 888-898. doi:10.1016/j.energy.2013.04.042
Piñero, G., Vergara, L., Desantes, J. M., & Broatch, A. (2000). Estimation of velocity fluctuation in internal combustion engine exhaust systems through beamforming techniques. Measurement Science and Technology, 11(11), 1585-1595. doi:10.1088/0957-0233/11/11/307
Galindo, J., Serrano, J. R., Arnau, F. J., & Piqueras, P. (2009). Description of a Semi-Independent Time Discretization Methodology for a One-Dimensional Gas Dynamics Model. Journal of Engineering for Gas Turbines and Power, 131(3). doi:10.1115/1.2983015
Serrano, J. R., Arnau, F. J., Dolz, V., Tiseira, A., & Cervelló, C. (2008). A model of turbocharger radial turbines appropriate to be used in zero- and one-dimensional gas dynamics codes for internal combustion engines modelling. Energy Conversion and Management, 49(12), 3729-3745. doi:10.1016/j.enconman.2008.06.031
Serrano, J. R., Tiseira, A., García-Cuevas, L. M., Inhestern, L. B., & Tartoussi, H. (2017). Radial turbine performance measurement under extreme off-design conditions. Energy, 125, 72-84. doi:10.1016/j.energy.2017.02.118
Welch, P. (1967). The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms. IEEE Transactions on Audio and Electroacoustics, 15(2), 70-73. doi:10.1109/tau.1967.1161901
Serrano, J. R., Arnau, F. J., García-Cuevas, L. M., & Inhestern, L. B. (2019). An innovative losses model for efficiency map fitting of vaneless and variable vaned radial turbines extrapolating towards extreme off-design conditions. Energy, 180, 626-639. doi:10.1016/j.energy.2019.05.062
Van Leer, B. (1974). Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme. Journal of Computational Physics, 14(4), 361-370. doi:10.1016/0021-9991(74)90019-9
Toro, E. F., Spruce, M., & Speares, W. (1994). Restoration of the contact surface in the HLL-Riemann solver. Shock Waves, 4(1), 25-34. doi:10.1007/bf01414629
Courant, R., Friedrichs, K., & Lewy, H. (1928). �ber die partiellen Differenzengleichungen der mathematischen Physik. Mathematische Annalen, 100(1), 32-74. doi:10.1007/bf01448839
[-]