- -

Organizational Factors that Drive to BIM Effectiveness: Technological Learning, Collaborative Culture, and Senior Management Support

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Organizational Factors that Drive to BIM Effectiveness: Technological Learning, Collaborative Culture, and Senior Management Support

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Villena-Manzanares, Francisco es_ES
dc.contributor.author García-Segura, Tatiana es_ES
dc.contributor.author Pellicer, Eugenio es_ES
dc.date.accessioned 2021-03-06T04:31:27Z
dc.date.available 2021-03-06T04:31:27Z
dc.date.issued 2021-01 es_ES
dc.identifier.uri http://hdl.handle.net/10251/163275
dc.description.abstract [EN] Senior management support is a key dynamic capacity for design companies in the architecture, engineering, and construction (AEC) industry, given the fact that they must identify changes in the competitive environment, which are increasingly becoming more and more technological. In addition, senior management support is obliged to react in the most efficient and effective way. Currently, the project design teams that have adopted building information modeling (BIM) are subject to constant changes in the technological environment, of which the activity is influenced by the behavior of senior management support. This research focuses on this issue by analyzing the role played by the variables of technological learning, collaborative culture, and support provided by senior management as precedents of BIM technology effectiveness. The data set has been obtained from 92 AEC companies in Spain. Using partial least squares (PLS), this research finds evidence of the previously mentioned relationships and the existence of partial mediation effects generated by technological learning and collaborative culture within the support of senior management in BIM technology effectiveness. In addition, this model achieves an appropriate level of predictive validation to explain BIM technology effectiveness in engineering project designs. The results highlight that senior management support needs to promote a technological learning and collaborative culture to improve the technological capabilities. The contribution and original value of the paper is to provide empirical evidence that the effectiveness of BIM factors in project design teams is influenced by the behavior of top management support. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Applied Sciences es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Senior management support es_ES
dc.subject BIM effectiveness es_ES
dc.subject Technological learning es_ES
dc.subject Collaborative culture es_ES
dc.subject PLS es_ES
dc.subject.classification PROYECTOS DE INGENIERIA es_ES
dc.title Organizational Factors that Drive to BIM Effectiveness: Technological Learning, Collaborative Culture, and Senior Management Support es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/app11010199 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil es_ES
dc.description.bibliographicCitation Villena-Manzanares, F.; García-Segura, T.; Pellicer, E. (2021). Organizational Factors that Drive to BIM Effectiveness: Technological Learning, Collaborative Culture, and Senior Management Support. Applied Sciences. 11(1):1-16. https://doi.org/10.3390/app11010199 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/app11010199 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 16 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11 es_ES
dc.description.issue 1 es_ES
dc.identifier.eissn 2076-3417 es_ES
dc.relation.pasarela S\426314 es_ES
dc.description.references Kassem, M., Brogden, T., & Dawood, N. (2012). BIM and 4D planning: a holistic study of the barriers and drivers to widespread adoption. Journal of Construction Engineering and Project Management, 2(4), 1-10. doi:10.6106/jcepm.2012.2.4.001 es_ES
dc.description.references Davis, F. D. (1989). Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Quarterly, 13(3), 319. doi:10.2307/249008 es_ES
dc.description.references Holden, R. J., & Karsh, B.-T. (2010). The Technology Acceptance Model: Its past and its future in health care. Journal of Biomedical Informatics, 43(1), 159-172. doi:10.1016/j.jbi.2009.07.002 es_ES
dc.description.references Lee, Y., Kozar, K. A., & Larsen, K. R. T. (2003). The Technology Acceptance Model: Past, Present, and Future. Communications of the Association for Information Systems, 12. doi:10.17705/1cais.01250 es_ES
dc.description.references Lee, S., & Yu, J. (2016). Comparative Study of BIM Acceptance between Korea and the United States. Journal of Construction Engineering and Management, 142(3), 05015016. doi:10.1061/(asce)co.1943-7862.0001076 es_ES
dc.description.references Ahuja, R., Jain, M., Sawhney, A., & Arif, M. (2016). Adoption of BIM by architectural firms in India: technology–organization–environment perspective. Architectural Engineering and Design Management, 12(4), 311-330. doi:10.1080/17452007.2016.1186589 es_ES
dc.description.references Xu, H., Feng, J., & Li, S. (2014). Users-orientated evaluation of building information model in the Chinese construction industry. Automation in Construction, 39, 32-46. doi:10.1016/j.autcon.2013.12.004 es_ES
dc.description.references Ahmed, A. L., & Kassem, M. (2018). A unified BIM adoption taxonomy: Conceptual development, empirical validation and application. Automation in Construction, 96, 103-127. doi:10.1016/j.autcon.2018.08.017 es_ES
dc.description.references Ullah, K., Lill, I., & Witt, E. (2019). An Overview of BIM Adoption in the Construction Industry: Benefits and Barriers. Emerald Reach Proceedings Series, 297-303. doi:10.1108/s2516-285320190000002052 es_ES
dc.description.references Latorre Uriz, A., Sanz, C., & Sánchez, B. (2019). Aplicación de un modelo Lean-BIM para la mejora de la productividad en redacción de proyectos de edificación. Informes de la Construcción, 71(556), 313. doi:10.3989/ic.67222 es_ES
dc.description.references Lu, N., & Korman, T. (2010). Implementation of Building Information Modeling (BIM) in Modular Construction: Benefits and Challenges. Construction Research Congress 2010. doi:10.1061/41109(373)114 es_ES
dc.description.references Gu, N., & London, K. (2010). Understanding and facilitating BIM adoption in the AEC industry. Automation in Construction, 19(8), 988-999. doi:10.1016/j.autcon.2010.09.002 es_ES
dc.description.references Gurevich, U., Sacks, R., & Shrestha, P. (2017). BIM adoption by public facility agencies: impacts on occupant value. Building Research & Information, 45(6), 610-630. doi:10.1080/09613218.2017.1289029 es_ES
dc.description.references Lee, S., & Yu, J. (2016). Discriminant model of BIM acceptance readiness in a construction organization. KSCE Journal of Civil Engineering, 21(3), 555-564. doi:10.1007/s12205-016-0555-9 es_ES
dc.description.references VDC Use in 2007: Significant Value, Dramatic Growth, and Apparent Business Opportunityhttp://cife.stanford.edu es_ES
dc.description.references Yuan, H., Yang, Y., & Xue, X. (2019). Promoting Owners’ BIM Adoption Behaviors to Achieve Sustainable Project Management. Sustainability, 11(14), 3905. doi:10.3390/su11143905 es_ES
dc.description.references Dodgson, M. (1993). Organizational Learning: A Review of Some Literatures. Organization Studies, 14(3), 375-394. doi:10.1177/017084069301400303 es_ES
dc.description.references Xue, W., Wang, Y., & Man, Q. (2015). Research on information models for the construction schedule management based on the IFC standard. Journal of Industrial Engineering and Management, 8(3). doi:10.3926/jiem.1283 es_ES
dc.description.references Lee, G., & Borrmann, A. (2020). BIM policy and management. Construction Management and Economics, 38(5), 413-419. doi:10.1080/01446193.2020.1726979 es_ES
dc.description.references Mahamadu, A.-M., Mahdjoubi, L., & Booth, C. A. (2017). Critical BIM qualification criteria for construction pre-qualification and selection. Architectural Engineering and Design Management, 13(5), 326-343. doi:10.1080/17452007.2017.1296812 es_ES
dc.description.references Arayici, Y., Coates, P., Koskela, L., Kagioglou, M., Usher, C., & O’Reilly, K. (2011). BIM adoption and implementation for architectural practices. Structural Survey, 29(1), 7-25. doi:10.1108/02630801111118377 es_ES
dc.description.references Alwisy, A., Al-Hussein, M., & Al-Jibouri, S. H. (2012). BIM Approach for Automated Drafting and Design for Modular Construction Manufacturing. Computing in Civil Engineering (2012). doi:10.1061/9780784412343.0028 es_ES
dc.description.references Song, J., Migliaccio, G. C., Wang, G., & Lu, H. (2017). Exploring the Influence of System Quality, Information Quality, and External Service on BIM User Satisfaction. Journal of Management in Engineering, 33(6), 04017036. doi:10.1061/(asce)me.1943-5479.0000549 es_ES
dc.description.references Orlikowski, W. J. (2000). Using Technology and Constituting Structures: A Practice Lens for Studying Technology in Organizations. Organization Science, 11(4), 404-428. doi:10.1287/orsc.11.4.404.14600 es_ES
dc.description.references Elmualim, A., & Gilder, J. (2013). BIM: innovation in design management, influence and challenges of implementation. Architectural Engineering and Design Management, 10(3-4), 183-199. doi:10.1080/17452007.2013.821399 es_ES
dc.description.references Ismail, N. A. A., Chiozzi, M., & Drogemuller, R. (2017). An overview of BIM uptake in Asian developing countries. doi:10.1063/1.5011596 es_ES
dc.description.references Hosseini, M. R., Banihashemi, S., Chileshe, N., Namzadi, M. O., Udaeja, C., Rameezdeen, R., & McCuen, T. (2016). BIM adoption within Australian Small and Medium-sized Enterprises (SMEs): an innovation diffusion model. Construction Economics and Building, 16(3), 71-86. doi:10.5130/ajceb.v16i3.5159 es_ES
dc.description.references Harrison, C., & Thurnell, D. (2015). BIM implementation in a New Zealand consultingquantity surveying practice. International Journal of Construction Supply Chain Management, 5(1), 1-15. doi:10.14424/ijcscm501015-01-15 es_ES
dc.description.references Bryde, D., Broquetas, M., & Volm, J. M. (2013). The project benefits of Building Information Modelling (BIM). International Journal of Project Management, 31(7), 971-980. doi:10.1016/j.ijproman.2012.12.001 es_ES
dc.description.references Yilmaz, G., Akcamete, A., & Demirors, O. (2019). A reference model for BIM capability assessments. Automation in Construction, 101, 245-263. doi:10.1016/j.autcon.2018.10.022 es_ES
dc.description.references Koutamanis, A. (2020). Dimensionality in BIM: Why BIM cannot have more than four dimensions? Automation in Construction, 114, 103153. doi:10.1016/j.autcon.2020.103153 es_ES
dc.description.references Mayouf, M., Gerges, M., & Cox, S. (2019). 5D BIM: an investigation into the integration of quantity surveyors within the BIM process. Journal of Engineering, Design and Technology, 17(3), 537-553. doi:10.1108/jedt-05-2018-0080 es_ES
dc.description.references Mesároš, P., Smetanková, J., & Mandičák, T. (2019). The Fifth Dimension of BIM – Implementation Survey. IOP Conference Series: Earth and Environmental Science, 222, 012003. doi:10.1088/1755-1315/222/1/012003 es_ES
dc.description.references Ghaffarianhoseini, A., Tookey, J., Ghaffarianhoseini, A., Naismith, N., Azhar, S., Efimova, O., & Raahemifar, K. (2017). Building Information Modelling (BIM) uptake: Clear benefits, understanding its implementation, risks and challenges. Renewable and Sustainable Energy Reviews, 75, 1046-1053. doi:10.1016/j.rser.2016.11.083 es_ES
dc.description.references Ragu-Nathan, B. S., Apigian, C. H., Ragu-Nathan, T. S., & Tu, Q. (2004). A path analytic study of the effect of top management support for information systems performance. Omega, 32(6), 459-471. doi:10.1016/j.omega.2004.03.001 es_ES
dc.description.references Cao, D., Wang, G., Li, H., Skitmore, M., Huang, T., & Zhang, W. (2015). Practices and effectiveness of building information modelling in construction projects in China. Automation in Construction, 49, 113-122. doi:10.1016/j.autcon.2014.10.014 es_ES
dc.description.references Sharma, & Yetton. (2003). The Contingent Effects of Management Support and Task Interdependence on Successful Information Systems Implementation. MIS Quarterly, 27(4), 533. doi:10.2307/30036548 es_ES
dc.description.references Young, R., & Jordan, E. (2008). Top management support: Mantra or necessity? International Journal of Project Management, 26(7), 713-725. doi:10.1016/j.ijproman.2008.06.001 es_ES
dc.description.references Rosenberg, N. (1976). On Technological Expectations. The Economic Journal, 86(343), 523. doi:10.2307/2230797 es_ES
dc.description.references Succar, B. (2009). Building information modelling framework: A research and delivery foundation for industry stakeholders. Automation in Construction, 18(3), 357-375. doi:10.1016/j.autcon.2008.10.003 es_ES
dc.description.references Baiden, B. K., Price, A. D. F., & Dainty, A. R. J. (2006). The extent of team integration within construction projects. International Journal of Project Management, 24(1), 13-23. doi:10.1016/j.ijproman.2005.05.001 es_ES
dc.description.references Chan, A. P. C., Scott, D., & Chan, A. P. L. (2004). Factors Affecting the Success of a Construction Project. Journal of Construction Engineering and Management, 130(1), 153-155. doi:10.1061/(asce)0733-9364(2004)130:1(153) es_ES
dc.description.references Cassel, C., Hackl, P., & Westlund, A. H. (1999). Robustness of partial least-squares method for estimating latent variable quality structures. Journal of Applied Statistics, 26(4), 435-446. doi:10.1080/02664769922322 es_ES
dc.description.references Hair, J. F., Ringle, C. M., & Sarstedt, M. (2013). Partial Least Squares Structural Equation Modeling: Rigorous Applications, Better Results and Higher Acceptance. Long Range Planning, 46(1-2), 1-12. doi:10.1016/j.lrp.2013.01.001 es_ES
dc.description.references Hair, J. F., Risher, J. J., Sarstedt, M., & Ringle, C. M. (2019). When to use and how to report the results of PLS-SEM. European Business Review, 31(1), 2-24. doi:10.1108/ebr-11-2018-0203 es_ES
dc.description.references Henseler, J., Hubona, G., & Ray, P. A. (2016). Using PLS path modeling in new technology research: updated guidelines. Industrial Management & Data Systems, 116(1), 2-20. doi:10.1108/imds-09-2015-0382 es_ES
dc.description.references Podsakoff, P. M., MacKenzie, S. B., Lee, J.-Y., & Podsakoff, N. P. (2003). Common method biases in behavioral research: A critical review of the literature and recommended remedies. Journal of Applied Psychology, 88(5), 879-903. doi:10.1037/0021-9010.88.5.879 es_ES
dc.description.references Reinartz, W., Haenlein, M., & Henseler, J. (2009). An empirical comparison of the efficacy of covariance-based and variance-based SEM. International Journal of Research in Marketing, 26(4), 332-344. doi:10.1016/j.ijresmar.2009.08.001 es_ES
dc.description.references Marcoulides, & Saunders. (2006). Editor’s Comments: PLS: A Silver Bullet? MIS Quarterly, 30(2), iii. doi:10.2307/25148727 es_ES
dc.description.references SmartPLS 3. Boenningstedt: SmartPLS GmbHhttp://www.smartpls.com es_ES
dc.description.references Chin, W. W., Marcolin, B. L., & Newsted, P. R. (2003). A Partial Least Squares Latent Variable Modeling Approach for Measuring Interaction Effects: Results from a Monte Carlo Simulation Study and an Electronic-Mail Emotion/Adoption Study. Information Systems Research, 14(2), 189-217. doi:10.1287/isre.14.2.189.16018 es_ES
dc.description.references Podsakoff, N. P., Shen, W., & Podsakoff, P. M. (s. f.). The Role of Formative Measurement Models in Strategic Management Research: Review, Critique, and Implications for Future Research. Research Methodology in Strategy and Management, 197-252. doi:10.1016/s1479-8387(06)03008-6 es_ES
dc.description.references Hair, J. F., Sarstedt, M., & Ringle, C. M. (2019). Rethinking some of the rethinking of partial least squares. European Journal of Marketing, 53(4), 566-584. doi:10.1108/ejm-10-2018-0665 es_ES
dc.description.references F. Hair Jr, J., Sarstedt, M., Hopkins, L., & G. Kuppelwieser, V. (2014). Partial least squares structural equation modeling (PLS-SEM). European Business Review, 26(2), 106-121. doi:10.1108/ebr-10-2013-0128 es_ES
dc.subject.ods 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem