Gonçalves, C., Ferreira da Silva, A., Gomes, J., & Simoes, R. (2018). Wearable E-Textile Technologies: A Review on Sensors, Actuators and Control Elements. Inventions, 3(1), 14. doi:10.3390/inventions3010014
Mostafalu, P., Tamayol, A., Rahimi, R., Ochoa, M., Khalilpour, A., Kiaee, G., … Khademhosseini, A. (2018). Smart Bandage for Monitoring and Treatment of Chronic Wounds. Small, 14(33), 1703509. doi:10.1002/smll.201703509
Shi, H., Zhao, H., Liu, Y., Gao, W., & Dou, S.-C. (2019). Systematic Analysis of a Military Wearable Device Based on a Multi-Level Fusion Framework: Research Directions. Sensors, 19(12), 2651. doi:10.3390/s19122651
[+]
Gonçalves, C., Ferreira da Silva, A., Gomes, J., & Simoes, R. (2018). Wearable E-Textile Technologies: A Review on Sensors, Actuators and Control Elements. Inventions, 3(1), 14. doi:10.3390/inventions3010014
Mostafalu, P., Tamayol, A., Rahimi, R., Ochoa, M., Khalilpour, A., Kiaee, G., … Khademhosseini, A. (2018). Smart Bandage for Monitoring and Treatment of Chronic Wounds. Small, 14(33), 1703509. doi:10.1002/smll.201703509
Shi, H., Zhao, H., Liu, Y., Gao, W., & Dou, S.-C. (2019). Systematic Analysis of a Military Wearable Device Based on a Multi-Level Fusion Framework: Research Directions. Sensors, 19(12), 2651. doi:10.3390/s19122651
Kim, K., Jung, M., Jeon, S., & Bae, J. (2019). Robust and scalable three-dimensional spacer textile pressure sensor for human motion detection. Smart Materials and Structures, 28(6), 065019. doi:10.1088/1361-665x/ab1adf
Ferri, J., Perez Fuster, C., Llinares Llopis, R., Moreno, J., & Garcia‑Breijo, E. (2018). Integration of a 2D Touch Sensor with an Electroluminescent Display by Using a Screen-Printing Technology on Textile Substrate. Sensors, 18(10), 3313. doi:10.3390/s18103313
De Vos, M., Torah, R., Glanc-Gostkiewicz, M., & Tudor, J. (2016). A Complex Multilayer Screen-Printed Electroluminescent Watch Display on Fabric. Journal of Display Technology, 12(12), 1757-1763. doi:10.1109/jdt.2016.2613906
Lin, X., & Seet, B.-C. (2017). Battery-Free Smart Sock for Abnormal Relative Plantar Pressure Monitoring. IEEE Transactions on Biomedical Circuits and Systems, 11(2), 464-473. doi:10.1109/tbcas.2016.2615603
Ejupi, A., & Menon, C. (2018). Detection of Talking in Respiratory Signals: A Feasibility Study Using Machine Learning and Wearable Textile-Based Sensors. Sensors, 18(8), 2474. doi:10.3390/s18082474
Polanský, R., Soukup, R., Řeboun, J., Kalčík, J., Moravcová, D., Kupka, L., … Hamáček, A. (2017). A novel large-area embroidered temperature sensor based on an innovative hybrid resistive thread. Sensors and Actuators A: Physical, 265, 111-119. doi:10.1016/j.sna.2017.08.030
Komazaki, Y., & Uemura, S. (2019). Stretchable, printable, and tunable PDMS-CaCl2 microcomposite for capacitive humidity sensors on textiles. Sensors and Actuators B: Chemical, 297, 126711. doi:10.1016/j.snb.2019.126711
Ng, C. L., & Reaz, M. B. I. (2019). Evolution of a capacitive electromyography contactless biosensor: Design and modelling techniques. Measurement, 145, 460-471. doi:10.1016/j.measurement.2019.05.031
Ferri, J., Lidón-Roger, J., Moreno, J., Martinez, G., & Garcia-Breijo, E. (2017). A Wearable Textile 2D Touchpad Sensor Based on Screen-Printing Technology. Materials, 10(12), 1450. doi:10.3390/ma10121450
Atalay, O. (2018). Textile-Based, Interdigital, Capacitive, Soft-Strain Sensor for Wearable Applications. Materials, 11(5), 768. doi:10.3390/ma11050768
Yongsang Kim, Hyejung Kim, & Hoi-Jun Yoo. (2010). Electrical Characterization of Screen-Printed Circuits on the Fabric. IEEE Transactions on Advanced Packaging, 33(1), 196-205. doi:10.1109/tadvp.2009.2034536
Lee, W. J., Park, J. Y., Nam, H. J., & Choa, S.-H. (2019). The development of a highly stretchable, durable, and printable textile electrode. Textile Research Journal, 89(19-20), 4104-4113. doi:10.1177/0040517519828992
Chatterjee, K., Tabor, J., & Ghosh, T. K. (2019). Electrically Conductive Coatings for Fiber-Based E-Textiles. Fibers, 7(6), 51. doi:10.3390/fib7060051
Gu, J. F., Gorgutsa, S., & Skorobogatiy, M. (2010). Soft capacitor fibers using conductive polymers for electronic textiles. Smart Materials and Structures, 19(11), 115006. doi:10.1088/0964-1726/19/11/115006
Khan, S., Lorenzelli, L., & Dahiya, R. S. (2015). Technologies for Printing Sensors and Electronics Over Large Flexible Substrates: A Review. IEEE Sensors Journal, 15(6), 3164-3185. doi:10.1109/jsen.2014.2375203
Zhang, Q., Wang, Y. L., Xia, Y., Zhang, P. F., Kirk, T. V., & Chen, X. D. (2019). Textile‐Only Capacitive Sensors for Facile Fabric Integration without Compromise of Wearability. Advanced Materials Technologies, 4(10), 1900485. doi:10.1002/admt.201900485
Mukherjee, P. K. (2018). Dielectric properties in textile materials: a theoretical study. The Journal of The Textile Institute, 110(2), 211-214. doi:10.1080/00405000.2018.1473710
Sadi, M. S., Yang, M., Luo, L., Cheng, D., Cai, G., & Wang, X. (2019). Direct screen printing of single-faced conductive cotton fabrics for strain sensing, electrical heating and color changing. Cellulose, 26(10), 6179-6188. doi:10.1007/s10570-019-02526-6
[-]