Mostrar el registro sencillo del ítem
dc.contributor.author | Ferri, Josue | es_ES |
dc.contributor.author | Llinares Llopis, Raúl | es_ES |
dc.contributor.author | Moreno, Jorge | es_ES |
dc.contributor.author | Lidon-Roger, Jose V. | es_ES |
dc.contributor.author | Garcia-Breijo, Eduardo | es_ES |
dc.date.accessioned | 2021-03-06T04:31:49Z | |
dc.date.available | 2021-03-06T04:31:49Z | |
dc.date.issued | 2020-08 | es_ES |
dc.identifier.issn | 0040-5175 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/163285 | |
dc.description.abstract | [EN] The design and development of textile-based capacitive sensors requires the implementation of textile capacitors with a determined capacitance. One of the main techniques to obtain these sensors is the screen-printing of conductive and dielectric inks on textiles. This paper investigates the fabrication parameters that have the most influence when designing and implementing a screen-printed capacitive sensor. In this work, a textile has been used directly as the dielectric part, influencing sensitively the value of the permittivity and the thickness of the dielectric of the capacitor. These are two fundamental parameters for the estimation of its capacitance. The choice of the conductive ink, its viscosity and solid content, as well as printing parameters, such as printing direction, also impact on the manner for obtaining the electrodes of the capacitive sensor. Although the resulting electrodes do not represent an important parameter for the estimation of the capacitance, it determines the selection of fabrics that can be printed. As a result of the investigation, the paper provides a guideline to choose the materials, such as fabrics or inks, as well as the printing parameters, to implement e-textile applications based on projected capacitive technologies. The experiments carried out on different fabrics and inks have provided results with capacities of less than 60 pF, the limit where the sensors based on capacitive technologies are located. | es_ES |
dc.description.sponsorship | The authors disclosed receipt of the following financial support for the research, authorship and/or publication of this article: This work was supported by the Conselleria d'Economia Sostenible, Sectors Productius i Treball, through IVACE (Instituto Valenciano de Competitividad Empresarial) and cofounded by ERDF funding from the European Union (Application no. IMAMCI/2019/1). This work was also supported by the Spanish Government/FEDER funds (RTI2018-100910-B-C43) (MINECO/FEDER). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | SAGE Publications | es_ES |
dc.relation.ispartof | Textile Research Journal | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Printed electronic | es_ES |
dc.subject | Screen-printing | es_ES |
dc.subject | Capacitive sensors | es_ES |
dc.subject | Touchpad | es_ES |
dc.subject | Wearables | es_ES |
dc.subject.classification | TECNOLOGIA ELECTRONICA | es_ES |
dc.subject.classification | TEORIA DE LA SEÑAL Y COMUNICACIONES | es_ES |
dc.title | An investigation into the fabrication parameters of screen-printed capacitive sensors on e-textiles | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1177/0040517519901016 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/IVACE//IMAMCI%2F2019%2F1/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-100910-B-C43/ES/DESARROLLO DE PLATAFORMAS DE DETECCION Y TERAPEUTICAS PARA APLICACIONES BIOMEDICAS BASADAS EN DISPOSITIVOS ELECTRONICOS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions | es_ES |
dc.description.bibliographicCitation | Ferri, J.; Llinares Llopis, R.; Moreno, J.; Lidon-Roger, JV.; Garcia-Breijo, E. (2020). An investigation into the fabrication parameters of screen-printed capacitive sensors on e-textiles. Textile Research Journal. 90(15-16):1749-1769. https://doi.org/10.1177/0040517519901016 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1177/0040517519901016 | es_ES |
dc.description.upvformatpinicio | 1749 | es_ES |
dc.description.upvformatpfin | 1769 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 90 | es_ES |
dc.description.issue | 15-16 | es_ES |
dc.relation.pasarela | S\401828 | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Institut Valencià de Competitivitat Empresarial | es_ES |
dc.contributor.funder | Ministerio de Economía, Industria y Competitividad | es_ES |
dc.description.references | Gonçalves, C., Ferreira da Silva, A., Gomes, J., & Simoes, R. (2018). Wearable E-Textile Technologies: A Review on Sensors, Actuators and Control Elements. Inventions, 3(1), 14. doi:10.3390/inventions3010014 | es_ES |
dc.description.references | Mostafalu, P., Tamayol, A., Rahimi, R., Ochoa, M., Khalilpour, A., Kiaee, G., … Khademhosseini, A. (2018). Smart Bandage for Monitoring and Treatment of Chronic Wounds. Small, 14(33), 1703509. doi:10.1002/smll.201703509 | es_ES |
dc.description.references | Shi, H., Zhao, H., Liu, Y., Gao, W., & Dou, S.-C. (2019). Systematic Analysis of a Military Wearable Device Based on a Multi-Level Fusion Framework: Research Directions. Sensors, 19(12), 2651. doi:10.3390/s19122651 | es_ES |
dc.description.references | Kim, K., Jung, M., Jeon, S., & Bae, J. (2019). Robust and scalable three-dimensional spacer textile pressure sensor for human motion detection. Smart Materials and Structures, 28(6), 065019. doi:10.1088/1361-665x/ab1adf | es_ES |
dc.description.references | Ferri, J., Perez Fuster, C., Llinares Llopis, R., Moreno, J., & Garcia‑Breijo, E. (2018). Integration of a 2D Touch Sensor with an Electroluminescent Display by Using a Screen-Printing Technology on Textile Substrate. Sensors, 18(10), 3313. doi:10.3390/s18103313 | es_ES |
dc.description.references | De Vos, M., Torah, R., Glanc-Gostkiewicz, M., & Tudor, J. (2016). A Complex Multilayer Screen-Printed Electroluminescent Watch Display on Fabric. Journal of Display Technology, 12(12), 1757-1763. doi:10.1109/jdt.2016.2613906 | es_ES |
dc.description.references | Lin, X., & Seet, B.-C. (2017). Battery-Free Smart Sock for Abnormal Relative Plantar Pressure Monitoring. IEEE Transactions on Biomedical Circuits and Systems, 11(2), 464-473. doi:10.1109/tbcas.2016.2615603 | es_ES |
dc.description.references | Ejupi, A., & Menon, C. (2018). Detection of Talking in Respiratory Signals: A Feasibility Study Using Machine Learning and Wearable Textile-Based Sensors. Sensors, 18(8), 2474. doi:10.3390/s18082474 | es_ES |
dc.description.references | Polanský, R., Soukup, R., Řeboun, J., Kalčík, J., Moravcová, D., Kupka, L., … Hamáček, A. (2017). A novel large-area embroidered temperature sensor based on an innovative hybrid resistive thread. Sensors and Actuators A: Physical, 265, 111-119. doi:10.1016/j.sna.2017.08.030 | es_ES |
dc.description.references | Komazaki, Y., & Uemura, S. (2019). Stretchable, printable, and tunable PDMS-CaCl2 microcomposite for capacitive humidity sensors on textiles. Sensors and Actuators B: Chemical, 297, 126711. doi:10.1016/j.snb.2019.126711 | es_ES |
dc.description.references | Ng, C. L., & Reaz, M. B. I. (2019). Evolution of a capacitive electromyography contactless biosensor: Design and modelling techniques. Measurement, 145, 460-471. doi:10.1016/j.measurement.2019.05.031 | es_ES |
dc.description.references | Ferri, J., Lidón-Roger, J., Moreno, J., Martinez, G., & Garcia-Breijo, E. (2017). A Wearable Textile 2D Touchpad Sensor Based on Screen-Printing Technology. Materials, 10(12), 1450. doi:10.3390/ma10121450 | es_ES |
dc.description.references | Atalay, O. (2018). Textile-Based, Interdigital, Capacitive, Soft-Strain Sensor for Wearable Applications. Materials, 11(5), 768. doi:10.3390/ma11050768 | es_ES |
dc.description.references | Yongsang Kim, Hyejung Kim, & Hoi-Jun Yoo. (2010). Electrical Characterization of Screen-Printed Circuits on the Fabric. IEEE Transactions on Advanced Packaging, 33(1), 196-205. doi:10.1109/tadvp.2009.2034536 | es_ES |
dc.description.references | Lee, W. J., Park, J. Y., Nam, H. J., & Choa, S.-H. (2019). The development of a highly stretchable, durable, and printable textile electrode. Textile Research Journal, 89(19-20), 4104-4113. doi:10.1177/0040517519828992 | es_ES |
dc.description.references | Chatterjee, K., Tabor, J., & Ghosh, T. K. (2019). Electrically Conductive Coatings for Fiber-Based E-Textiles. Fibers, 7(6), 51. doi:10.3390/fib7060051 | es_ES |
dc.description.references | Gu, J. F., Gorgutsa, S., & Skorobogatiy, M. (2010). Soft capacitor fibers using conductive polymers for electronic textiles. Smart Materials and Structures, 19(11), 115006. doi:10.1088/0964-1726/19/11/115006 | es_ES |
dc.description.references | Khan, S., Lorenzelli, L., & Dahiya, R. S. (2015). Technologies for Printing Sensors and Electronics Over Large Flexible Substrates: A Review. IEEE Sensors Journal, 15(6), 3164-3185. doi:10.1109/jsen.2014.2375203 | es_ES |
dc.description.references | Zhang, Q., Wang, Y. L., Xia, Y., Zhang, P. F., Kirk, T. V., & Chen, X. D. (2019). Textile‐Only Capacitive Sensors for Facile Fabric Integration without Compromise of Wearability. Advanced Materials Technologies, 4(10), 1900485. doi:10.1002/admt.201900485 | es_ES |
dc.description.references | Mukherjee, P. K. (2018). Dielectric properties in textile materials: a theoretical study. The Journal of The Textile Institute, 110(2), 211-214. doi:10.1080/00405000.2018.1473710 | es_ES |
dc.description.references | Sadi, M. S., Yang, M., Luo, L., Cheng, D., Cai, G., & Wang, X. (2019). Direct screen printing of single-faced conductive cotton fabrics for strain sensing, electrical heating and color changing. Cellulose, 26(10), 6179-6188. doi:10.1007/s10570-019-02526-6 | es_ES |