Al-Madi, N., Faris, H., & Mirjalili, S. (2019). Binary multi-verse optimization algorithm for global optimization and discrete problems. International Journal of Machine Learning and Cybernetics, 10(12), 3445-3465. doi:10.1007/s13042-019-00931-8
García, J., Moraga, P., Valenzuela, M., Crawford, B., Soto, R., Pinto, H., … Astorga, G. (2019). A Db-Scan Binarization Algorithm Applied to Matrix Covering Problems. Computational Intelligence and Neuroscience, 2019, 1-16. doi:10.1155/2019/3238574
Guo, H., Liu, B., Cai, D., & Lu, T. (2016). Predicting protein–protein interaction sites using modified support vector machine. International Journal of Machine Learning and Cybernetics, 9(3), 393-398. doi:10.1007/s13042-015-0450-6
[+]
Al-Madi, N., Faris, H., & Mirjalili, S. (2019). Binary multi-verse optimization algorithm for global optimization and discrete problems. International Journal of Machine Learning and Cybernetics, 10(12), 3445-3465. doi:10.1007/s13042-019-00931-8
García, J., Moraga, P., Valenzuela, M., Crawford, B., Soto, R., Pinto, H., … Astorga, G. (2019). A Db-Scan Binarization Algorithm Applied to Matrix Covering Problems. Computational Intelligence and Neuroscience, 2019, 1-16. doi:10.1155/2019/3238574
Guo, H., Liu, B., Cai, D., & Lu, T. (2016). Predicting protein–protein interaction sites using modified support vector machine. International Journal of Machine Learning and Cybernetics, 9(3), 393-398. doi:10.1007/s13042-015-0450-6
Korkmaz, S., Babalik, A., & Kiran, M. S. (2017). An artificial algae algorithm for solving binary optimization problems. International Journal of Machine Learning and Cybernetics, 9(7), 1233-1247. doi:10.1007/s13042-017-0772-7
García, J., Martí, J. V., & Yepes, V. (2020). The Buttressed Walls Problem: An Application of a Hybrid Clustering Particle Swarm Optimization Algorithm. Mathematics, 8(6), 862. doi:10.3390/math8060862
Yepes, V., Martí, J. V., & García, J. (2020). Black Hole Algorithm for Sustainable Design of Counterfort Retaining Walls. Sustainability, 12(7), 2767. doi:10.3390/su12072767
Talbi, E.-G. (2015). Combining metaheuristics with mathematical programming, constraint programming and machine learning. Annals of Operations Research, 240(1), 171-215. doi:10.1007/s10479-015-2034-y
Juan, A. A., Faulin, J., Grasman, S. E., Rabe, M., & Figueira, G. (2015). A review of simheuristics: Extending metaheuristics to deal with stochastic combinatorial optimization problems. Operations Research Perspectives, 2, 62-72. doi:10.1016/j.orp.2015.03.001
Chou, J.-S., & Nguyen, T.-K. (2018). Forward Forecast of Stock Price Using Sliding-Window Metaheuristic-Optimized Machine-Learning Regression. IEEE Transactions on Industrial Informatics, 14(7), 3132-3142. doi:10.1109/tii.2018.2794389
Zheng, B., Zhang, J., Yoon, S. W., Lam, S. S., Khasawneh, M., & Poranki, S. (2015). Predictive modeling of hospital readmissions using metaheuristics and data mining. Expert Systems with Applications, 42(20), 7110-7120. doi:10.1016/j.eswa.2015.04.066
De León, A. D., Lalla-Ruiz, E., Melián-Batista, B., & Marcos Moreno-Vega, J. (2017). A Machine Learning-based system for berth scheduling at bulk terminals. Expert Systems with Applications, 87, 170-182. doi:10.1016/j.eswa.2017.06.010
García, J., Lalla-Ruiz, E., Voß, S., & Droguett, E. L. (2020). Enhancing a machine learning binarization framework by perturbation operators: analysis on the multidimensional knapsack problem. International Journal of Machine Learning and Cybernetics, 11(9), 1951-1970. doi:10.1007/s13042-020-01085-8
García, J., Crawford, B., Soto, R., & Astorga, G. (2019). A clustering algorithm applied to the binarization of Swarm intelligence continuous metaheuristics. Swarm and Evolutionary Computation, 44, 646-664. doi:10.1016/j.swevo.2018.08.006
García, J., Crawford, B., Soto, R., Castro, C., & Paredes, F. (2017). A k-means binarization framework applied to multidimensional knapsack problem. Applied Intelligence, 48(2), 357-380. doi:10.1007/s10489-017-0972-6
Dokeroglu, T., Sevinc, E., Kucukyilmaz, T., & Cosar, A. (2019). A survey on new generation metaheuristic algorithms. Computers & Industrial Engineering, 137, 106040. doi:10.1016/j.cie.2019.106040
Zong Woo Geem, Joong Hoon Kim, & Loganathan, G. V. (2001). A New Heuristic Optimization Algorithm: Harmony Search. SIMULATION, 76(2), 60-68. doi:10.1177/003754970107600201
Rashedi, E., Nezamabadi-pour, H., & Saryazdi, S. (2009). GSA: A Gravitational Search Algorithm. Information Sciences, 179(13), 2232-2248. doi:10.1016/j.ins.2009.03.004
Rao, R. V., Savsani, V. J., & Vakharia, D. P. (2011). Teaching–learning-based optimization: A novel method for constrained mechanical design optimization problems. Computer-Aided Design, 43(3), 303-315. doi:10.1016/j.cad.2010.12.015
Gandomi, A. H., & Alavi, A. H. (2012). Krill herd: A new bio-inspired optimization algorithm. Communications in Nonlinear Science and Numerical Simulation, 17(12), 4831-4845. doi:10.1016/j.cnsns.2012.05.010
Cuevas, E., & Cienfuegos, M. (2014). A new algorithm inspired in the behavior of the social-spider for constrained optimization. Expert Systems with Applications, 41(2), 412-425. doi:10.1016/j.eswa.2013.07.067
Xu, L., Hutter, F., Hoos, H. H., & Leyton-Brown, K. (2008). SATzilla: Portfolio-based Algorithm Selection for SAT. Journal of Artificial Intelligence Research, 32, 565-606. doi:10.1613/jair.2490
Smith-Miles, K., & van Hemert, J. (2011). Discovering the suitability of optimisation algorithms by learning from evolved instances. Annals of Mathematics and Artificial Intelligence, 61(2), 87-104. doi:10.1007/s10472-011-9230-5
Peña, J. M., Lozano, J. A., & Larrañaga, P. (2005). Globally Multimodal Problem Optimization Via an Estimation of Distribution Algorithm Based on Unsupervised Learning of Bayesian Networks. Evolutionary Computation, 13(1), 43-66. doi:10.1162/1063656053583432
Hutter, F., Xu, L., Hoos, H. H., & Leyton-Brown, K. (2014). Algorithm runtime prediction: Methods & evaluation. Artificial Intelligence, 206, 79-111. doi:10.1016/j.artint.2013.10.003
Eiben, A. E., & Smit, S. K. (2011). Parameter tuning for configuring and analyzing evolutionary algorithms. Swarm and Evolutionary Computation, 1(1), 19-31. doi:10.1016/j.swevo.2011.02.001
García, J., Yepes, V., & Martí, J. V. (2020). A Hybrid k-Means Cuckoo Search Algorithm Applied to the Counterfort Retaining Walls Problem. Mathematics, 8(4), 555. doi:10.3390/math8040555
García, J., Moraga, P., Valenzuela, M., & Pinto, H. (2020). A db-Scan Hybrid Algorithm: An Application to the Multidimensional Knapsack Problem. Mathematics, 8(4), 507. doi:10.3390/math8040507
Poikolainen, I., Neri, F., & Caraffini, F. (2015). Cluster-Based Population Initialization for differential evolution frameworks. Information Sciences, 297, 216-235. doi:10.1016/j.ins.2014.11.026
García, J., & Maureira, C. (2021). A KNN quantum cuckoo search algorithm applied to the multidimensional knapsack problem. Applied Soft Computing, 102, 107077. doi:10.1016/j.asoc.2020.107077
Rice, J. R. (1976). The Algorithm Selection Problem. Advances in Computers Volume 15, 65-118. doi:10.1016/s0065-2458(08)60520-3
Burke, E. K., Gendreau, M., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., & Qu, R. (2013). Hyper-heuristics: a survey of the state of the art. Journal of the Operational Research Society, 64(12), 1695-1724. doi:10.1057/jors.2013.71
Florez-Lozano, J., Caraffini, F., Parra, C., & Gongora, M. (2020). Cooperative and distributed decision-making in a multi-agent perception system for improvised land mines detection. Information Fusion, 64, 32-49. doi:10.1016/j.inffus.2020.06.009
Crawford, B., Soto, R., Astorga, G., García, J., Castro, C., & Paredes, F. (2017). Putting Continuous Metaheuristics to Work in Binary Search Spaces. Complexity, 2017, 1-19. doi:10.1155/2017/8404231
Mafarja, M., Aljarah, I., Heidari, A. A., Faris, H., Fournier-Viger, P., Li, X., & Mirjalili, S. (2018). Binary dragonfly optimization for feature selection using time-varying transfer functions. Knowledge-Based Systems, 161, 185-204. doi:10.1016/j.knosys.2018.08.003
Feng, Y., An, H., & Gao, X. (2018). The Importance of Transfer Function in Solving Set-Union Knapsack Problem Based on Discrete Moth Search Algorithm. Mathematics, 7(1), 17. doi:10.3390/math7010017
Zhang, G. (2010). Quantum-inspired evolutionary algorithms: a survey and empirical study. Journal of Heuristics, 17(3), 303-351. doi:10.1007/s10732-010-9136-0
Srikanth, K., Panwar, L. K., Panigrahi, B., Herrera-Viedma, E., Sangaiah, A. K., & Wang, G.-G. (2018). Meta-heuristic framework: Quantum inspired binary grey wolf optimizer for unit commitment problem. Computers & Electrical Engineering, 70, 243-260. doi:10.1016/j.compeleceng.2017.07.023
Hu, H., Yang, K., Liu, L., Su, L., & Yang, Z. (2019). Short-Term Hydropower Generation Scheduling Using an Improved Cloud Adaptive Quantum-Inspired Binary Social Spider Optimization Algorithm. Water Resources Management, 33(7), 2357-2379. doi:10.1007/s11269-018-2138-7
Gao, Y. J., Zhang, F. M., Zhao, Y., & Li, C. (2019). A novel quantum-inspired binary wolf pack algorithm for difficult knapsack problem. International Journal of Wireless and Mobile Computing, 16(3), 222. doi:10.1504/ijwmc.2019.099861
Kumar, Y., Verma, S. K., & Sharma, S. (2020). Quantum-inspired binary gravitational search algorithm to recognize the facial expressions. International Journal of Modern Physics C, 31(10), 2050138. doi:10.1142/s0129183120501387
Balas, E., & Padberg, M. W. (1976). Set Partitioning: A survey. SIAM Review, 18(4), 710-760. doi:10.1137/1018115
Borneman, J., Chrobak, M., Della Vedova, G., Figueroa, A., & Jiang, T. (2001). Probe selection algorithms with applications in the analysis of microbial communities. Bioinformatics, 17(Suppl 1), S39-S48. doi:10.1093/bioinformatics/17.suppl_1.s39
Boros, E., Hammer, P. L., Ibaraki, T., & Kogan, A. (1997). Logical analysis of numerical data. Mathematical Programming, 79(1-3), 163-190. doi:10.1007/bf02614316
Balas, E., & Carrera, M. C. (1996). A Dynamic Subgradient-Based Branch-and-Bound Procedure for Set Covering. Operations Research, 44(6), 875-890. doi:10.1287/opre.44.6.875
Beasley, J. E. (1987). An algorithm for set covering problem. European Journal of Operational Research, 31(1), 85-93. doi:10.1016/0377-2217(87)90141-x
Beasley, J. E. (1990). A lagrangian heuristic for set-covering problems. Naval Research Logistics, 37(1), 151-164. doi:10.1002/1520-6750(199002)37:1<151::aid-nav3220370110>3.0.co;2-2
Beasley, J. ., & Chu, P. . (1996). A genetic algorithm for the set covering problem. European Journal of Operational Research, 94(2), 392-404. doi:10.1016/0377-2217(95)00159-x
Soto, R., Crawford, B., Olivares, R., Barraza, J., Figueroa, I., Johnson, F., … Olguín, E. (2017). Solving the non-unicost set covering problem by using cuckoo search and black hole optimization. Natural Computing, 16(2), 213-229. doi:10.1007/s11047-016-9609-7
[-]