- -

An Analysis of a KNN Perturbation Operator: An Application to the Binarization of Continuous Metaheuristics

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

An Analysis of a KNN Perturbation Operator: An Application to the Binarization of Continuous Metaheuristics

Show simple item record

Files in this item

dc.contributor.author García, José es_ES
dc.contributor.author Astorga, Gino es_ES
dc.contributor.author Yepes, V. es_ES
dc.date.accessioned 2021-03-06T04:32:03Z
dc.date.available 2021-03-06T04:32:03Z
dc.date.issued 2021-02 es_ES
dc.identifier.uri http://hdl.handle.net/10251/163290
dc.description.abstract [EN] The optimization methods and, in particular, metaheuristics must be constantly improved to reduce execution times, improve the results, and thus be able to address broader instances. In particular, addressing combinatorial optimization problems is critical in the areas of operational research and engineering. In this work, a perturbation operator is proposed which uses the k-nearest neighbors technique, and this is studied with the aim of improving the diversification and intensification properties of metaheuristic algorithms in their binary version. Random operators are designed to study the contribution of the perturbation operator. To verify the proposal, large instances of the well-known set covering problem are studied. Box plots, convergence charts, and the Wilcoxon statistical test are used to determine the operator contribution. Furthermore, a comparison is made using metaheuristic techniques that use general binarization mechanisms such as transfer functions or db-scan as binarization methods. The results obtained indicate that the KNN perturbation operator improves significantly the results. es_ES
dc.description.sponsorship The first author was supported by the Grant CONICYT/FONDECYT/INICIACION/11180056. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Mathematics es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Combinatorial optimization es_ES
dc.subject Machine learning es_ES
dc.subject KNN es_ES
dc.subject Metaheuristics es_ES
dc.subject Transfer functions es_ES
dc.subject.classification INGENIERIA DE LA CONSTRUCCION es_ES
dc.title An Analysis of a KNN Perturbation Operator: An Application to the Binarization of Continuous Metaheuristics es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/math9030225 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FONDECYT//11180056/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil es_ES
dc.description.bibliographicCitation García, J.; Astorga, G.; Yepes, V. (2021). An Analysis of a KNN Perturbation Operator: An Application to the Binarization of Continuous Metaheuristics. Mathematics. 9(3):1-20. https://doi.org/10.3390/math9030225 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/math9030225 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 20 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 9 es_ES
dc.description.issue 3 es_ES
dc.identifier.eissn 2227-7390 es_ES
dc.relation.pasarela S\426348 es_ES
dc.contributor.funder Fondo Nacional de Desarrollo Científico y Tecnológico, Chile es_ES
dc.description.references Al-Madi, N., Faris, H., & Mirjalili, S. (2019). Binary multi-verse optimization algorithm for global optimization and discrete problems. International Journal of Machine Learning and Cybernetics, 10(12), 3445-3465. doi:10.1007/s13042-019-00931-8 es_ES
dc.description.references García, J., Moraga, P., Valenzuela, M., Crawford, B., Soto, R., Pinto, H., … Astorga, G. (2019). A Db-Scan Binarization Algorithm Applied to Matrix Covering Problems. Computational Intelligence and Neuroscience, 2019, 1-16. doi:10.1155/2019/3238574 es_ES
dc.description.references Guo, H., Liu, B., Cai, D., & Lu, T. (2016). Predicting protein–protein interaction sites using modified support vector machine. International Journal of Machine Learning and Cybernetics, 9(3), 393-398. doi:10.1007/s13042-015-0450-6 es_ES
dc.description.references Korkmaz, S., Babalik, A., & Kiran, M. S. (2017). An artificial algae algorithm for solving binary optimization problems. International Journal of Machine Learning and Cybernetics, 9(7), 1233-1247. doi:10.1007/s13042-017-0772-7 es_ES
dc.description.references García, J., Martí, J. V., & Yepes, V. (2020). The Buttressed Walls Problem: An Application of a Hybrid Clustering Particle Swarm Optimization Algorithm. Mathematics, 8(6), 862. doi:10.3390/math8060862 es_ES
dc.description.references Yepes, V., Martí, J. V., & García, J. (2020). Black Hole Algorithm for Sustainable Design of Counterfort Retaining Walls. Sustainability, 12(7), 2767. doi:10.3390/su12072767 es_ES
dc.description.references Talbi, E.-G. (2015). Combining metaheuristics with mathematical programming, constraint programming and machine learning. Annals of Operations Research, 240(1), 171-215. doi:10.1007/s10479-015-2034-y es_ES
dc.description.references Juan, A. A., Faulin, J., Grasman, S. E., Rabe, M., & Figueira, G. (2015). A review of simheuristics: Extending metaheuristics to deal with stochastic combinatorial optimization problems. Operations Research Perspectives, 2, 62-72. doi:10.1016/j.orp.2015.03.001 es_ES
dc.description.references Chou, J.-S., & Nguyen, T.-K. (2018). Forward Forecast of Stock Price Using Sliding-Window Metaheuristic-Optimized Machine-Learning Regression. IEEE Transactions on Industrial Informatics, 14(7), 3132-3142. doi:10.1109/tii.2018.2794389 es_ES
dc.description.references Zheng, B., Zhang, J., Yoon, S. W., Lam, S. S., Khasawneh, M., & Poranki, S. (2015). Predictive modeling of hospital readmissions using metaheuristics and data mining. Expert Systems with Applications, 42(20), 7110-7120. doi:10.1016/j.eswa.2015.04.066 es_ES
dc.description.references De León, A. D., Lalla-Ruiz, E., Melián-Batista, B., & Marcos Moreno-Vega, J. (2017). A Machine Learning-based system for berth scheduling at bulk terminals. Expert Systems with Applications, 87, 170-182. doi:10.1016/j.eswa.2017.06.010 es_ES
dc.description.references García, J., Lalla-Ruiz, E., Voß, S., & Droguett, E. L. (2020). Enhancing a machine learning binarization framework by perturbation operators: analysis on the multidimensional knapsack problem. International Journal of Machine Learning and Cybernetics, 11(9), 1951-1970. doi:10.1007/s13042-020-01085-8 es_ES
dc.description.references García, J., Crawford, B., Soto, R., & Astorga, G. (2019). A clustering algorithm applied to the binarization of Swarm intelligence continuous metaheuristics. Swarm and Evolutionary Computation, 44, 646-664. doi:10.1016/j.swevo.2018.08.006 es_ES
dc.description.references García, J., Crawford, B., Soto, R., Castro, C., & Paredes, F. (2017). A k-means binarization framework applied to multidimensional knapsack problem. Applied Intelligence, 48(2), 357-380. doi:10.1007/s10489-017-0972-6 es_ES
dc.description.references Dokeroglu, T., Sevinc, E., Kucukyilmaz, T., & Cosar, A. (2019). A survey on new generation metaheuristic algorithms. Computers & Industrial Engineering, 137, 106040. doi:10.1016/j.cie.2019.106040 es_ES
dc.description.references Zong Woo Geem, Joong Hoon Kim, & Loganathan, G. V. (2001). A New Heuristic Optimization Algorithm: Harmony Search. SIMULATION, 76(2), 60-68. doi:10.1177/003754970107600201 es_ES
dc.description.references Rashedi, E., Nezamabadi-pour, H., & Saryazdi, S. (2009). GSA: A Gravitational Search Algorithm. Information Sciences, 179(13), 2232-2248. doi:10.1016/j.ins.2009.03.004 es_ES
dc.description.references Rao, R. V., Savsani, V. J., & Vakharia, D. P. (2011). Teaching–learning-based optimization: A novel method for constrained mechanical design optimization problems. Computer-Aided Design, 43(3), 303-315. doi:10.1016/j.cad.2010.12.015 es_ES
dc.description.references Gandomi, A. H., & Alavi, A. H. (2012). Krill herd: A new bio-inspired optimization algorithm. Communications in Nonlinear Science and Numerical Simulation, 17(12), 4831-4845. doi:10.1016/j.cnsns.2012.05.010 es_ES
dc.description.references Cuevas, E., & Cienfuegos, M. (2014). A new algorithm inspired in the behavior of the social-spider for constrained optimization. Expert Systems with Applications, 41(2), 412-425. doi:10.1016/j.eswa.2013.07.067 es_ES
dc.description.references Xu, L., Hutter, F., Hoos, H. H., & Leyton-Brown, K. (2008). SATzilla: Portfolio-based Algorithm Selection for SAT. Journal of Artificial Intelligence Research, 32, 565-606. doi:10.1613/jair.2490 es_ES
dc.description.references Smith-Miles, K., & van Hemert, J. (2011). Discovering the suitability of optimisation algorithms by learning from evolved instances. Annals of Mathematics and Artificial Intelligence, 61(2), 87-104. doi:10.1007/s10472-011-9230-5 es_ES
dc.description.references Peña, J. M., Lozano, J. A., & Larrañaga, P. (2005). Globally Multimodal Problem Optimization Via an Estimation of Distribution Algorithm Based on Unsupervised Learning of Bayesian Networks. Evolutionary Computation, 13(1), 43-66. doi:10.1162/1063656053583432 es_ES
dc.description.references Hutter, F., Xu, L., Hoos, H. H., & Leyton-Brown, K. (2014). Algorithm runtime prediction: Methods & evaluation. Artificial Intelligence, 206, 79-111. doi:10.1016/j.artint.2013.10.003 es_ES
dc.description.references Eiben, A. E., & Smit, S. K. (2011). Parameter tuning for configuring and analyzing evolutionary algorithms. Swarm and Evolutionary Computation, 1(1), 19-31. doi:10.1016/j.swevo.2011.02.001 es_ES
dc.description.references García, J., Yepes, V., & Martí, J. V. (2020). A Hybrid k-Means Cuckoo Search Algorithm Applied to the Counterfort Retaining Walls Problem. Mathematics, 8(4), 555. doi:10.3390/math8040555 es_ES
dc.description.references García, J., Moraga, P., Valenzuela, M., & Pinto, H. (2020). A db-Scan Hybrid Algorithm: An Application to the Multidimensional Knapsack Problem. Mathematics, 8(4), 507. doi:10.3390/math8040507 es_ES
dc.description.references Poikolainen, I., Neri, F., & Caraffini, F. (2015). Cluster-Based Population Initialization for differential evolution frameworks. Information Sciences, 297, 216-235. doi:10.1016/j.ins.2014.11.026 es_ES
dc.description.references García, J., & Maureira, C. (2021). A KNN quantum cuckoo search algorithm applied to the multidimensional knapsack problem. Applied Soft Computing, 102, 107077. doi:10.1016/j.asoc.2020.107077 es_ES
dc.description.references Rice, J. R. (1976). The Algorithm Selection Problem. Advances in Computers Volume 15, 65-118. doi:10.1016/s0065-2458(08)60520-3 es_ES
dc.description.references Burke, E. K., Gendreau, M., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., & Qu, R. (2013). Hyper-heuristics: a survey of the state of the art. Journal of the Operational Research Society, 64(12), 1695-1724. doi:10.1057/jors.2013.71 es_ES
dc.description.references Florez-Lozano, J., Caraffini, F., Parra, C., & Gongora, M. (2020). Cooperative and distributed decision-making in a multi-agent perception system for improvised land mines detection. Information Fusion, 64, 32-49. doi:10.1016/j.inffus.2020.06.009 es_ES
dc.description.references Crawford, B., Soto, R., Astorga, G., García, J., Castro, C., & Paredes, F. (2017). Putting Continuous Metaheuristics to Work in Binary Search Spaces. Complexity, 2017, 1-19. doi:10.1155/2017/8404231 es_ES
dc.description.references Mafarja, M., Aljarah, I., Heidari, A. A., Faris, H., Fournier-Viger, P., Li, X., & Mirjalili, S. (2018). Binary dragonfly optimization for feature selection using time-varying transfer functions. Knowledge-Based Systems, 161, 185-204. doi:10.1016/j.knosys.2018.08.003 es_ES
dc.description.references Feng, Y., An, H., & Gao, X. (2018). The Importance of Transfer Function in Solving Set-Union Knapsack Problem Based on Discrete Moth Search Algorithm. Mathematics, 7(1), 17. doi:10.3390/math7010017 es_ES
dc.description.references Zhang, G. (2010). Quantum-inspired evolutionary algorithms: a survey and empirical study. Journal of Heuristics, 17(3), 303-351. doi:10.1007/s10732-010-9136-0 es_ES
dc.description.references Srikanth, K., Panwar, L. K., Panigrahi, B., Herrera-Viedma, E., Sangaiah, A. K., & Wang, G.-G. (2018). Meta-heuristic framework: Quantum inspired binary grey wolf optimizer for unit commitment problem. Computers & Electrical Engineering, 70, 243-260. doi:10.1016/j.compeleceng.2017.07.023 es_ES
dc.description.references Hu, H., Yang, K., Liu, L., Su, L., & Yang, Z. (2019). Short-Term Hydropower Generation Scheduling Using an Improved Cloud Adaptive Quantum-Inspired Binary Social Spider Optimization Algorithm. Water Resources Management, 33(7), 2357-2379. doi:10.1007/s11269-018-2138-7 es_ES
dc.description.references Gao, Y. J., Zhang, F. M., Zhao, Y., & Li, C. (2019). A novel quantum-inspired binary wolf pack algorithm for difficult knapsack problem. International Journal of Wireless and Mobile Computing, 16(3), 222. doi:10.1504/ijwmc.2019.099861 es_ES
dc.description.references Kumar, Y., Verma, S. K., & Sharma, S. (2020). Quantum-inspired binary gravitational search algorithm to recognize the facial expressions. International Journal of Modern Physics C, 31(10), 2050138. doi:10.1142/s0129183120501387 es_ES
dc.description.references Balas, E., & Padberg, M. W. (1976). Set Partitioning: A survey. SIAM Review, 18(4), 710-760. doi:10.1137/1018115 es_ES
dc.description.references Borneman, J., Chrobak, M., Della Vedova, G., Figueroa, A., & Jiang, T. (2001). Probe selection algorithms with applications in the analysis of microbial communities. Bioinformatics, 17(Suppl 1), S39-S48. doi:10.1093/bioinformatics/17.suppl_1.s39 es_ES
dc.description.references Boros, E., Hammer, P. L., Ibaraki, T., & Kogan, A. (1997). Logical analysis of numerical data. Mathematical Programming, 79(1-3), 163-190. doi:10.1007/bf02614316 es_ES
dc.description.references Balas, E., & Carrera, M. C. (1996). A Dynamic Subgradient-Based Branch-and-Bound Procedure for Set Covering. Operations Research, 44(6), 875-890. doi:10.1287/opre.44.6.875 es_ES
dc.description.references Beasley, J. E. (1987). An algorithm for set covering problem. European Journal of Operational Research, 31(1), 85-93. doi:10.1016/0377-2217(87)90141-x es_ES
dc.description.references Beasley, J. E. (1990). A lagrangian heuristic for set-covering problems. Naval Research Logistics, 37(1), 151-164. doi:10.1002/1520-6750(199002)37:1<151::aid-nav3220370110>3.0.co;2-2 es_ES
dc.description.references Beasley, J. ., & Chu, P. . (1996). A genetic algorithm for the set covering problem. European Journal of Operational Research, 94(2), 392-404. doi:10.1016/0377-2217(95)00159-x es_ES
dc.description.references Soto, R., Crawford, B., Olivares, R., Barraza, J., Figueroa, I., Johnson, F., … Olguín, E. (2017). Solving the non-unicost set covering problem by using cuckoo search and black hole optimization. Natural Computing, 16(2), 213-229. doi:10.1007/s11047-016-9609-7 es_ES


This item appears in the following Collection(s)

Show simple item record