- -

Embodied Energy Optimization of Buttressed Earth-Retaining Walls with Hybrid Simulated Annealing

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Embodied Energy Optimization of Buttressed Earth-Retaining Walls with Hybrid Simulated Annealing

Mostrar el registro completo del ítem

Martínez-Muñoz, D.; Martí Albiñana, JV.; García, J.; Yepes, V. (2021). Embodied Energy Optimization of Buttressed Earth-Retaining Walls with Hybrid Simulated Annealing. Applied Sciences. 11(4):1-16. https://doi.org/10.3390/app11041800

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/163291

Ficheros en el ítem

Metadatos del ítem

Título: Embodied Energy Optimization of Buttressed Earth-Retaining Walls with Hybrid Simulated Annealing
Autor: Martínez-Muñoz, D. Martí Albiñana, José Vicente García, José Yepes, V.
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil
Fecha difusión:
Resumen:
[EN] The importance of construction in the consumption of natural resources is leading structural design professionals to create more efficient structure designs that reduce emissions as well as the energy consumed. This ...[+]
Palabras clave: Heuristic optimization , Energy savings , Sustainable construction , Buttressed earth-retaining walls
Derechos de uso: Reconocimiento (by)
Fuente:
Applied Sciences. (eissn: 2076-3417 )
DOI: 10.3390/app11041800
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/app11041800
Coste APC: 2420
Código del Proyecto:
info:eu-repo/grantAgreement/FONDECYT//11180056/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/BIA2017-85098-R/ES/DISEÑO Y MANTENIMIENTO OPTIMO ROBUSTO Y BASADO EN FIABILIDAD DE PUENTES E INFRAESTRUCTURAS VIARIAS DE ALTA EFICIENCIA SOCIAL Y MEDIOAMBIENTAL BAJO PRESUPUESTOS RESTRICTIVOS/
info:eu-repo/grantAgreement/MCIU//FPU18%2F01592/
Agradecimientos:
The authors acknowledge the financial support of the Spanish Ministry of Economy and Business, along with FEDER funding (DIMALIFE Project: BIA2017-85098-R) and the Spanish Ministry of Science, Innovation and Universities ...[+]
Tipo: Artículo

References

Casals, X. G. (2006). Analysis of building energy regulation and certification in Europe: Their role, limitations and differences. Energy and Buildings, 38(5), 381-392. doi:10.1016/j.enbuild.2005.05.004

Sartori, I., & Hestnes, A. G. (2007). Energy use in the life cycle of conventional and low-energy buildings: A review article. Energy and Buildings, 39(3), 249-257. doi:10.1016/j.enbuild.2006.07.001

Reap, J., Roman, F., Duncan, S., & Bras, B. (2008). A survey of unresolved problems in life cycle assessment. The International Journal of Life Cycle Assessment, 13(4), 290-300. doi:10.1007/s11367-008-0008-x [+]
Casals, X. G. (2006). Analysis of building energy regulation and certification in Europe: Their role, limitations and differences. Energy and Buildings, 38(5), 381-392. doi:10.1016/j.enbuild.2005.05.004

Sartori, I., & Hestnes, A. G. (2007). Energy use in the life cycle of conventional and low-energy buildings: A review article. Energy and Buildings, 39(3), 249-257. doi:10.1016/j.enbuild.2006.07.001

Reap, J., Roman, F., Duncan, S., & Bras, B. (2008). A survey of unresolved problems in life cycle assessment. The International Journal of Life Cycle Assessment, 13(4), 290-300. doi:10.1007/s11367-008-0008-x

Reap, J., Roman, F., Duncan, S., & Bras, B. (2008). A survey of unresolved problems in life cycle assessment. The International Journal of Life Cycle Assessment, 13(5), 374-388. doi:10.1007/s11367-008-0009-9

Dixit, M. K., Fernández-Solís, J. L., Lavy, S., & Culp, C. H. (2010). Identification of parameters for embodied energy measurement: A literature review. Energy and Buildings, 42(8), 1238-1247. doi:10.1016/j.enbuild.2010.02.016

Hernandez, P., & Kenny, P. (2010). From net energy to zero energy buildings: Defining life cycle zero energy buildings (LC-ZEB). Energy and Buildings, 42(6), 815-821. doi:10.1016/j.enbuild.2009.12.001

Chang, Y., Ries, R. J., & Lei, S. (2012). The embodied energy and emissions of a high-rise education building: A quantification using process-based hybrid life cycle inventory model. Energy and Buildings, 55, 790-798. doi:10.1016/j.enbuild.2012.10.019

Ramesh, T., Prakash, R., & Shukla, K. K. (2010). Life cycle energy analysis of buildings: An overview. Energy and Buildings, 42(10), 1592-1600. doi:10.1016/j.enbuild.2010.05.007

Fay, R., Treloar, G., & Iyer-Raniga, U. (2000). Life-cycle energy analysis of buildings: a case study. Building Research & Information, 28(1), 31-41. doi:10.1080/096132100369073

Zastrow, P., Molina-Moreno, F., García-Segura, T., Martí, J. V., & Yepes, V. (2017). Life cycle assessment of cost-optimized buttress earth-retaining walls: A parametric study. Journal of Cleaner Production, 140, 1037-1048. doi:10.1016/j.jclepro.2016.10.085

Orr, J., Bras, A., & Ibell, T. (2017). Effectiveness of design codes for life cycle energy optimisation. Energy and Buildings, 140, 61-67. doi:10.1016/j.enbuild.2017.01.085

Shadram, F., & Mukkavaara, J. (2019). Exploring the effects of several energy efficiency measures on the embodied/operational energy trade-off: A case study of swedish residential buildings. Energy and Buildings, 183, 283-296. doi:10.1016/j.enbuild.2018.11.026

Azarafza, M., Feizi-Derakhshi, M.-R., & Azarafza, M. (2017). Computer modeling of crack propagation in concrete retaining walls: A case study. Computers and Concrete, 19(5), 509-514. doi:10.12989/cac.2017.19.5.509

Mergos, P. E. (2018). Seismic design of reinforced concrete frames for minimum embodied CO 2 emissions. Energy and Buildings, 162, 177-186. doi:10.1016/j.enbuild.2017.12.039

Park, H. S., Hwang, J. W., & Oh, B. K. (2018). Integrated analysis model for assessing CO2 emissions, seismic performance, and costs of buildings through performance-based optimal seismic design with sustainability. Energy and Buildings, 158, 761-775. doi:10.1016/j.enbuild.2017.10.070

Yepes, V., Dasí-Gil, M., Martínez-Muñoz, D., López-Desfilis, V. J., & Martí, J. V. (2019). Heuristic Techniques for the Design of Steel-Concrete Composite Pedestrian Bridges. Applied Sciences, 9(16), 3253. doi:10.3390/app9163253

Yoon, Y.-C., Kim, K.-H., Lee, S.-H., & Yeo, D. (2018). Sustainable design for reinforced concrete columns through embodied energy and CO2 emission optimization. Energy and Buildings, 174, 44-53. doi:10.1016/j.enbuild.2018.06.013

Minoglou, M. K., Hatzigeorgiou, G. D., & Papagiannopoulos, G. A. (2013). Heuristic optimization of cylindrical thin-walled steel tanks under seismic loads. Thin-Walled Structures, 64, 50-59. doi:10.1016/j.tws.2012.12.009

Pan, Q., Yi, Z., Yan, D., & Xu, H. (2019). Pseudo-Static Analysis on the Shifting-Girder Process of the Novel Rail-Cable-Shifting-Girder Technique for the Long Span Suspension Bridge. Applied Sciences, 9(23), 5158. doi:10.3390/app9235158

Balasbaneh, A. T., & Marsono, A. K. B. (2020). Applying multi-criteria decision-making on alternatives for earth-retaining walls: LCA, LCC, and S-LCA. The International Journal of Life Cycle Assessment, 25(11), 2140-2153. doi:10.1007/s11367-020-01825-6

Yeo, D., & Gabbai, R. D. (2011). Sustainable design of reinforced concrete structures through embodied energy optimization. Energy and Buildings, 43(8), 2028-2033. doi:10.1016/j.enbuild.2011.04.014

Yu, R., Zhang, D., & Yan, H. (2017). Embodied Energy and Cost Optimization of RC Beam under Blast Load. Mathematical Problems in Engineering, 2017, 1-8. doi:10.1155/2017/1907972

Penadés-Plà, V., García-Segura, T., & Yepes, V. (2019). Accelerated optimization method for low-embodied energy concrete box-girder bridge design. Engineering Structures, 179, 556-565. doi:10.1016/j.engstruct.2018.11.015

Foraboschi, P., Mercanzin, M., & Trabucco, D. (2014). Sustainable structural design of tall buildings based on embodied energy. Energy and Buildings, 68, 254-269. doi:10.1016/j.enbuild.2013.09.003

Camp, C. V., & Akin, A. (2012). Design of Retaining Walls Using Big Bang–Big Crunch Optimization. Journal of Structural Engineering, 138(3), 438-448. doi:10.1061/(asce)st.1943-541x.0000461

Kayabekir, A. E., Arama, Z. A., Bekdaş, G., Nigdeli, S. M., & Geem, Z. W. (2020). Eco-Friendly Design of Reinforced Concrete Retaining Walls: Multi-objective Optimization with Harmony Search Applications. Sustainability, 12(15), 6087. doi:10.3390/su12156087

García, J., Yepes, V., & Martí, J. V. (2020). A Hybrid k-Means Cuckoo Search Algorithm Applied to the Counterfort Retaining Walls Problem. Mathematics, 8(4), 555. doi:10.3390/math8040555

Yepes, V., Martí, J. V., & García, J. (2020). Black Hole Algorithm for Sustainable Design of Counterfort Retaining Walls. Sustainability, 12(7), 2767. doi:10.3390/su12072767

García, J., Martí, J. V., & Yepes, V. (2020). The Buttressed Walls Problem: An Application of a Hybrid Clustering Particle Swarm Optimization Algorithm. Mathematics, 8(6), 862. doi:10.3390/math8060862

Catalonia Institute of Construction Technology BEDEC ITEC Materials Databasehttps://metabase.itec.cat/vide/es/bedec

Yepes, V., Gonzalez-Vidosa, F., Alcala, J., & Villalba, P. (2012). CO2-Optimization Design of Reinforced Concrete Retaining Walls Based on a VNS-Threshold Acceptance Strategy. Journal of Computing in Civil Engineering, 26(3), 378-386. doi:10.1061/(asce)cp.1943-5487.0000140

Molina-Moreno, F., García-Segura, T., Martí, J. V., & Yepes, V. (2017). Optimization of buttressed earth-retaining walls using hybrid harmony search algorithms. Engineering Structures, 134, 205-216. doi:10.1016/j.engstruct.2016.12.042

Yepes, V., Alcala, J., Perea, C., & González-Vidosa, F. (2008). A parametric study of optimum earth-retaining walls by simulated annealing. Engineering Structures, 30(3), 821-830. doi:10.1016/j.engstruct.2007.05.023

Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by Simulated Annealing. Science, 220(4598), 671-680. doi:10.1126/science.220.4598.671

Medina, J. R. (2001). Estimation of Incident and Reflected Waves Using Simulated Annealing. Journal of Waterway, Port, Coastal, and Ocean Engineering, 127(4), 213-221. doi:10.1061/(asce)0733-950x(2001)127:4(213)

Glauber, R. J. (1963). Time‐Dependent Statistics of the Ising Model. Journal of Mathematical Physics, 4(2), 294-307. doi:10.1063/1.1703954

Soke, A., & Bingul, Z. (2006). Hybrid genetic algorithm and simulated annealing for two-dimensional non-guillotine rectangular packing problems. Engineering Applications of Artificial Intelligence, 19(5), 557-567. doi:10.1016/j.engappai.2005.12.003

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem