Casals, X. G. (2006). Analysis of building energy regulation and certification in Europe: Their role, limitations and differences. Energy and Buildings, 38(5), 381-392. doi:10.1016/j.enbuild.2005.05.004
Sartori, I., & Hestnes, A. G. (2007). Energy use in the life cycle of conventional and low-energy buildings: A review article. Energy and Buildings, 39(3), 249-257. doi:10.1016/j.enbuild.2006.07.001
Reap, J., Roman, F., Duncan, S., & Bras, B. (2008). A survey of unresolved problems in life cycle assessment. The International Journal of Life Cycle Assessment, 13(4), 290-300. doi:10.1007/s11367-008-0008-x
[+]
Casals, X. G. (2006). Analysis of building energy regulation and certification in Europe: Their role, limitations and differences. Energy and Buildings, 38(5), 381-392. doi:10.1016/j.enbuild.2005.05.004
Sartori, I., & Hestnes, A. G. (2007). Energy use in the life cycle of conventional and low-energy buildings: A review article. Energy and Buildings, 39(3), 249-257. doi:10.1016/j.enbuild.2006.07.001
Reap, J., Roman, F., Duncan, S., & Bras, B. (2008). A survey of unresolved problems in life cycle assessment. The International Journal of Life Cycle Assessment, 13(4), 290-300. doi:10.1007/s11367-008-0008-x
Reap, J., Roman, F., Duncan, S., & Bras, B. (2008). A survey of unresolved problems in life cycle assessment. The International Journal of Life Cycle Assessment, 13(5), 374-388. doi:10.1007/s11367-008-0009-9
Dixit, M. K., Fernández-Solís, J. L., Lavy, S., & Culp, C. H. (2010). Identification of parameters for embodied energy measurement: A literature review. Energy and Buildings, 42(8), 1238-1247. doi:10.1016/j.enbuild.2010.02.016
Hernandez, P., & Kenny, P. (2010). From net energy to zero energy buildings: Defining life cycle zero energy buildings (LC-ZEB). Energy and Buildings, 42(6), 815-821. doi:10.1016/j.enbuild.2009.12.001
Chang, Y., Ries, R. J., & Lei, S. (2012). The embodied energy and emissions of a high-rise education building: A quantification using process-based hybrid life cycle inventory model. Energy and Buildings, 55, 790-798. doi:10.1016/j.enbuild.2012.10.019
Ramesh, T., Prakash, R., & Shukla, K. K. (2010). Life cycle energy analysis of buildings: An overview. Energy and Buildings, 42(10), 1592-1600. doi:10.1016/j.enbuild.2010.05.007
Fay, R., Treloar, G., & Iyer-Raniga, U. (2000). Life-cycle energy analysis of buildings: a case study. Building Research & Information, 28(1), 31-41. doi:10.1080/096132100369073
Zastrow, P., Molina-Moreno, F., García-Segura, T., Martí, J. V., & Yepes, V. (2017). Life cycle assessment of cost-optimized buttress earth-retaining walls: A parametric study. Journal of Cleaner Production, 140, 1037-1048. doi:10.1016/j.jclepro.2016.10.085
Orr, J., Bras, A., & Ibell, T. (2017). Effectiveness of design codes for life cycle energy optimisation. Energy and Buildings, 140, 61-67. doi:10.1016/j.enbuild.2017.01.085
Shadram, F., & Mukkavaara, J. (2019). Exploring the effects of several energy efficiency measures on the embodied/operational energy trade-off: A case study of swedish residential buildings. Energy and Buildings, 183, 283-296. doi:10.1016/j.enbuild.2018.11.026
Azarafza, M., Feizi-Derakhshi, M.-R., & Azarafza, M. (2017). Computer modeling of crack propagation in concrete retaining walls: A case study. Computers and Concrete, 19(5), 509-514. doi:10.12989/cac.2017.19.5.509
Mergos, P. E. (2018). Seismic design of reinforced concrete frames for minimum embodied CO 2 emissions. Energy and Buildings, 162, 177-186. doi:10.1016/j.enbuild.2017.12.039
Park, H. S., Hwang, J. W., & Oh, B. K. (2018). Integrated analysis model for assessing CO2 emissions, seismic performance, and costs of buildings through performance-based optimal seismic design with sustainability. Energy and Buildings, 158, 761-775. doi:10.1016/j.enbuild.2017.10.070
Yepes, V., Dasí-Gil, M., Martínez-Muñoz, D., López-Desfilis, V. J., & Martí, J. V. (2019). Heuristic Techniques for the Design of Steel-Concrete Composite Pedestrian Bridges. Applied Sciences, 9(16), 3253. doi:10.3390/app9163253
Yoon, Y.-C., Kim, K.-H., Lee, S.-H., & Yeo, D. (2018). Sustainable design for reinforced concrete columns through embodied energy and CO2 emission optimization. Energy and Buildings, 174, 44-53. doi:10.1016/j.enbuild.2018.06.013
Minoglou, M. K., Hatzigeorgiou, G. D., & Papagiannopoulos, G. A. (2013). Heuristic optimization of cylindrical thin-walled steel tanks under seismic loads. Thin-Walled Structures, 64, 50-59. doi:10.1016/j.tws.2012.12.009
Pan, Q., Yi, Z., Yan, D., & Xu, H. (2019). Pseudo-Static Analysis on the Shifting-Girder Process of the Novel Rail-Cable-Shifting-Girder Technique for the Long Span Suspension Bridge. Applied Sciences, 9(23), 5158. doi:10.3390/app9235158
Balasbaneh, A. T., & Marsono, A. K. B. (2020). Applying multi-criteria decision-making on alternatives for earth-retaining walls: LCA, LCC, and S-LCA. The International Journal of Life Cycle Assessment, 25(11), 2140-2153. doi:10.1007/s11367-020-01825-6
Yeo, D., & Gabbai, R. D. (2011). Sustainable design of reinforced concrete structures through embodied energy optimization. Energy and Buildings, 43(8), 2028-2033. doi:10.1016/j.enbuild.2011.04.014
Yu, R., Zhang, D., & Yan, H. (2017). Embodied Energy and Cost Optimization of RC Beam under Blast Load. Mathematical Problems in Engineering, 2017, 1-8. doi:10.1155/2017/1907972
Penadés-Plà, V., García-Segura, T., & Yepes, V. (2019). Accelerated optimization method for low-embodied energy concrete box-girder bridge design. Engineering Structures, 179, 556-565. doi:10.1016/j.engstruct.2018.11.015
Foraboschi, P., Mercanzin, M., & Trabucco, D. (2014). Sustainable structural design of tall buildings based on embodied energy. Energy and Buildings, 68, 254-269. doi:10.1016/j.enbuild.2013.09.003
Camp, C. V., & Akin, A. (2012). Design of Retaining Walls Using Big Bang–Big Crunch Optimization. Journal of Structural Engineering, 138(3), 438-448. doi:10.1061/(asce)st.1943-541x.0000461
Kayabekir, A. E., Arama, Z. A., Bekdaş, G., Nigdeli, S. M., & Geem, Z. W. (2020). Eco-Friendly Design of Reinforced Concrete Retaining Walls: Multi-objective Optimization with Harmony Search Applications. Sustainability, 12(15), 6087. doi:10.3390/su12156087
García, J., Yepes, V., & Martí, J. V. (2020). A Hybrid k-Means Cuckoo Search Algorithm Applied to the Counterfort Retaining Walls Problem. Mathematics, 8(4), 555. doi:10.3390/math8040555
Yepes, V., Martí, J. V., & García, J. (2020). Black Hole Algorithm for Sustainable Design of Counterfort Retaining Walls. Sustainability, 12(7), 2767. doi:10.3390/su12072767
García, J., Martí, J. V., & Yepes, V. (2020). The Buttressed Walls Problem: An Application of a Hybrid Clustering Particle Swarm Optimization Algorithm. Mathematics, 8(6), 862. doi:10.3390/math8060862
Catalonia Institute of Construction Technology BEDEC ITEC Materials Databasehttps://metabase.itec.cat/vide/es/bedec
Yepes, V., Gonzalez-Vidosa, F., Alcala, J., & Villalba, P. (2012). CO2-Optimization Design of Reinforced Concrete Retaining Walls Based on a VNS-Threshold Acceptance Strategy. Journal of Computing in Civil Engineering, 26(3), 378-386. doi:10.1061/(asce)cp.1943-5487.0000140
Molina-Moreno, F., García-Segura, T., Martí, J. V., & Yepes, V. (2017). Optimization of buttressed earth-retaining walls using hybrid harmony search algorithms. Engineering Structures, 134, 205-216. doi:10.1016/j.engstruct.2016.12.042
Yepes, V., Alcala, J., Perea, C., & González-Vidosa, F. (2008). A parametric study of optimum earth-retaining walls by simulated annealing. Engineering Structures, 30(3), 821-830. doi:10.1016/j.engstruct.2007.05.023
Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by Simulated Annealing. Science, 220(4598), 671-680. doi:10.1126/science.220.4598.671
Medina, J. R. (2001). Estimation of Incident and Reflected Waves Using Simulated Annealing. Journal of Waterway, Port, Coastal, and Ocean Engineering, 127(4), 213-221. doi:10.1061/(asce)0733-950x(2001)127:4(213)
Glauber, R. J. (1963). Time‐Dependent Statistics of the Ising Model. Journal of Mathematical Physics, 4(2), 294-307. doi:10.1063/1.1703954
Soke, A., & Bingul, Z. (2006). Hybrid genetic algorithm and simulated annealing for two-dimensional non-guillotine rectangular packing problems. Engineering Applications of Artificial Intelligence, 19(5), 557-567. doi:10.1016/j.engappai.2005.12.003
[-]