- -

Embodied Energy Optimization of Buttressed Earth-Retaining Walls with Hybrid Simulated Annealing

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Embodied Energy Optimization of Buttressed Earth-Retaining Walls with Hybrid Simulated Annealing

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Martínez-Muñoz, D. es_ES
dc.contributor.author Martí Albiñana, José Vicente es_ES
dc.contributor.author García, José es_ES
dc.contributor.author Yepes, V. es_ES
dc.date.accessioned 2021-03-06T04:32:04Z
dc.date.available 2021-03-06T04:32:04Z
dc.date.issued 2021-02 es_ES
dc.identifier.uri http://hdl.handle.net/10251/163291
dc.description.abstract [EN] The importance of construction in the consumption of natural resources is leading structural design professionals to create more efficient structure designs that reduce emissions as well as the energy consumed. This paper presents an automated process to obtain low embodied energy buttressed earth-retaining wall optimum designs. Two objective functions were considered to compare the difference between a cost optimization and an embodied energy optimization. To reach the best design for every optimization criterion, a tuning of the algorithm parameters was carried out. This study used a hybrid simulated optimization algorithm to obtain the values of the geometry, the concrete resistances, and the amounts of concrete and materials to obtain an optimum buttressed earth-retaining wall low embodied energy design. The relation between all the geometric variables and the wall height was obtained by adjusting the linear and parabolic functions. A relationship was found between the two optimization criteria, and it can be concluded that cost and energy optimization are linked. This allows us to state that a cost reduction of €1 has an associated energy consumption reduction of 4.54 kWh. To achieve a low embodied energy design, it is recommended to reduce the distance between buttresses with respect to economic optimization. This decrease allows a reduction in the reinforcing steel needed to resist stem bending. The difference between the results of the geometric variables of the foundation for the two-optimization objectives reveals hardly any variation between them. This work gives technicians some rules to get optimum cost and embodied energy design. Furthermore, it compares designs obtained through these two optimization objectives with traditional design recommendations. es_ES
dc.description.sponsorship The authors acknowledge the financial support of the Spanish Ministry of Economy and Business, along with FEDER funding (DIMALIFE Project: BIA2017-85098-R) and the Spanish Ministry of Science, Innovation and Universities for David Martínez-Muñoz University Teacher Training Grant (FPU18/01592). They would also like to emphasize that José García was supported by the Grant CONICYT/FONDECYT/INICIACION/11180056. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Applied Sciences es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Heuristic optimization es_ES
dc.subject Energy savings es_ES
dc.subject Sustainable construction es_ES
dc.subject Buttressed earth-retaining walls es_ES
dc.subject.classification INGENIERIA DE LA CONSTRUCCION es_ES
dc.title Embodied Energy Optimization of Buttressed Earth-Retaining Walls with Hybrid Simulated Annealing es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/app11041800 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FONDECYT//11180056/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/BIA2017-85098-R/ES/DISEÑO Y MANTENIMIENTO OPTIMO ROBUSTO Y BASADO EN FIABILIDAD DE PUENTES E INFRAESTRUCTURAS VIARIAS DE ALTA EFICIENCIA SOCIAL Y MEDIOAMBIENTAL BAJO PRESUPUESTOS RESTRICTIVOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MCIU//FPU18%2F01592/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil es_ES
dc.description.bibliographicCitation Martínez-Muñoz, D.; Martí Albiñana, JV.; García, J.; Yepes, V. (2021). Embodied Energy Optimization of Buttressed Earth-Retaining Walls with Hybrid Simulated Annealing. Applied Sciences. 11(4):1-16. https://doi.org/10.3390/app11041800 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/app11041800 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 16 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11 es_ES
dc.description.issue 4 es_ES
dc.identifier.eissn 2076-3417 es_ES
dc.relation.pasarela S\428703 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Ciencia, Innovación y Universidades es_ES
dc.contributor.funder Fondo Nacional de Desarrollo Científico y Tecnológico, Chile es_ES
dc.description.references Casals, X. G. (2006). Analysis of building energy regulation and certification in Europe: Their role, limitations and differences. Energy and Buildings, 38(5), 381-392. doi:10.1016/j.enbuild.2005.05.004 es_ES
dc.description.references Sartori, I., & Hestnes, A. G. (2007). Energy use in the life cycle of conventional and low-energy buildings: A review article. Energy and Buildings, 39(3), 249-257. doi:10.1016/j.enbuild.2006.07.001 es_ES
dc.description.references Reap, J., Roman, F., Duncan, S., & Bras, B. (2008). A survey of unresolved problems in life cycle assessment. The International Journal of Life Cycle Assessment, 13(4), 290-300. doi:10.1007/s11367-008-0008-x es_ES
dc.description.references Reap, J., Roman, F., Duncan, S., & Bras, B. (2008). A survey of unresolved problems in life cycle assessment. The International Journal of Life Cycle Assessment, 13(5), 374-388. doi:10.1007/s11367-008-0009-9 es_ES
dc.description.references Dixit, M. K., Fernández-Solís, J. L., Lavy, S., & Culp, C. H. (2010). Identification of parameters for embodied energy measurement: A literature review. Energy and Buildings, 42(8), 1238-1247. doi:10.1016/j.enbuild.2010.02.016 es_ES
dc.description.references Hernandez, P., & Kenny, P. (2010). From net energy to zero energy buildings: Defining life cycle zero energy buildings (LC-ZEB). Energy and Buildings, 42(6), 815-821. doi:10.1016/j.enbuild.2009.12.001 es_ES
dc.description.references Chang, Y., Ries, R. J., & Lei, S. (2012). The embodied energy and emissions of a high-rise education building: A quantification using process-based hybrid life cycle inventory model. Energy and Buildings, 55, 790-798. doi:10.1016/j.enbuild.2012.10.019 es_ES
dc.description.references Ramesh, T., Prakash, R., & Shukla, K. K. (2010). Life cycle energy analysis of buildings: An overview. Energy and Buildings, 42(10), 1592-1600. doi:10.1016/j.enbuild.2010.05.007 es_ES
dc.description.references Fay, R., Treloar, G., & Iyer-Raniga, U. (2000). Life-cycle energy analysis of buildings: a case study. Building Research & Information, 28(1), 31-41. doi:10.1080/096132100369073 es_ES
dc.description.references Zastrow, P., Molina-Moreno, F., García-Segura, T., Martí, J. V., & Yepes, V. (2017). Life cycle assessment of cost-optimized buttress earth-retaining walls: A parametric study. Journal of Cleaner Production, 140, 1037-1048. doi:10.1016/j.jclepro.2016.10.085 es_ES
dc.description.references Orr, J., Bras, A., & Ibell, T. (2017). Effectiveness of design codes for life cycle energy optimisation. Energy and Buildings, 140, 61-67. doi:10.1016/j.enbuild.2017.01.085 es_ES
dc.description.references Shadram, F., & Mukkavaara, J. (2019). Exploring the effects of several energy efficiency measures on the embodied/operational energy trade-off: A case study of swedish residential buildings. Energy and Buildings, 183, 283-296. doi:10.1016/j.enbuild.2018.11.026 es_ES
dc.description.references Azarafza, M., Feizi-Derakhshi, M.-R., & Azarafza, M. (2017). Computer modeling of crack propagation in concrete retaining walls: A case study. Computers and Concrete, 19(5), 509-514. doi:10.12989/cac.2017.19.5.509 es_ES
dc.description.references Mergos, P. E. (2018). Seismic design of reinforced concrete frames for minimum embodied CO 2 emissions. Energy and Buildings, 162, 177-186. doi:10.1016/j.enbuild.2017.12.039 es_ES
dc.description.references Park, H. S., Hwang, J. W., & Oh, B. K. (2018). Integrated analysis model for assessing CO2 emissions, seismic performance, and costs of buildings through performance-based optimal seismic design with sustainability. Energy and Buildings, 158, 761-775. doi:10.1016/j.enbuild.2017.10.070 es_ES
dc.description.references Yepes, V., Dasí-Gil, M., Martínez-Muñoz, D., López-Desfilis, V. J., & Martí, J. V. (2019). Heuristic Techniques for the Design of Steel-Concrete Composite Pedestrian Bridges. Applied Sciences, 9(16), 3253. doi:10.3390/app9163253 es_ES
dc.description.references Yoon, Y.-C., Kim, K.-H., Lee, S.-H., & Yeo, D. (2018). Sustainable design for reinforced concrete columns through embodied energy and CO2 emission optimization. Energy and Buildings, 174, 44-53. doi:10.1016/j.enbuild.2018.06.013 es_ES
dc.description.references Minoglou, M. K., Hatzigeorgiou, G. D., & Papagiannopoulos, G. A. (2013). Heuristic optimization of cylindrical thin-walled steel tanks under seismic loads. Thin-Walled Structures, 64, 50-59. doi:10.1016/j.tws.2012.12.009 es_ES
dc.description.references Pan, Q., Yi, Z., Yan, D., & Xu, H. (2019). Pseudo-Static Analysis on the Shifting-Girder Process of the Novel Rail-Cable-Shifting-Girder Technique for the Long Span Suspension Bridge. Applied Sciences, 9(23), 5158. doi:10.3390/app9235158 es_ES
dc.description.references Balasbaneh, A. T., & Marsono, A. K. B. (2020). Applying multi-criteria decision-making on alternatives for earth-retaining walls: LCA, LCC, and S-LCA. The International Journal of Life Cycle Assessment, 25(11), 2140-2153. doi:10.1007/s11367-020-01825-6 es_ES
dc.description.references Yeo, D., & Gabbai, R. D. (2011). Sustainable design of reinforced concrete structures through embodied energy optimization. Energy and Buildings, 43(8), 2028-2033. doi:10.1016/j.enbuild.2011.04.014 es_ES
dc.description.references Yu, R., Zhang, D., & Yan, H. (2017). Embodied Energy and Cost Optimization of RC Beam under Blast Load. Mathematical Problems in Engineering, 2017, 1-8. doi:10.1155/2017/1907972 es_ES
dc.description.references Penadés-Plà, V., García-Segura, T., & Yepes, V. (2019). Accelerated optimization method for low-embodied energy concrete box-girder bridge design. Engineering Structures, 179, 556-565. doi:10.1016/j.engstruct.2018.11.015 es_ES
dc.description.references Foraboschi, P., Mercanzin, M., & Trabucco, D. (2014). Sustainable structural design of tall buildings based on embodied energy. Energy and Buildings, 68, 254-269. doi:10.1016/j.enbuild.2013.09.003 es_ES
dc.description.references Camp, C. V., & Akin, A. (2012). Design of Retaining Walls Using Big Bang–Big Crunch Optimization. Journal of Structural Engineering, 138(3), 438-448. doi:10.1061/(asce)st.1943-541x.0000461 es_ES
dc.description.references Kayabekir, A. E., Arama, Z. A., Bekdaş, G., Nigdeli, S. M., & Geem, Z. W. (2020). Eco-Friendly Design of Reinforced Concrete Retaining Walls: Multi-objective Optimization with Harmony Search Applications. Sustainability, 12(15), 6087. doi:10.3390/su12156087 es_ES
dc.description.references García, J., Yepes, V., & Martí, J. V. (2020). A Hybrid k-Means Cuckoo Search Algorithm Applied to the Counterfort Retaining Walls Problem. Mathematics, 8(4), 555. doi:10.3390/math8040555 es_ES
dc.description.references Yepes, V., Martí, J. V., & García, J. (2020). Black Hole Algorithm for Sustainable Design of Counterfort Retaining Walls. Sustainability, 12(7), 2767. doi:10.3390/su12072767 es_ES
dc.description.references García, J., Martí, J. V., & Yepes, V. (2020). The Buttressed Walls Problem: An Application of a Hybrid Clustering Particle Swarm Optimization Algorithm. Mathematics, 8(6), 862. doi:10.3390/math8060862 es_ES
dc.description.references Catalonia Institute of Construction Technology BEDEC ITEC Materials Databasehttps://metabase.itec.cat/vide/es/bedec es_ES
dc.description.references Yepes, V., Gonzalez-Vidosa, F., Alcala, J., & Villalba, P. (2012). CO2-Optimization Design of Reinforced Concrete Retaining Walls Based on a VNS-Threshold Acceptance Strategy. Journal of Computing in Civil Engineering, 26(3), 378-386. doi:10.1061/(asce)cp.1943-5487.0000140 es_ES
dc.description.references Molina-Moreno, F., García-Segura, T., Martí, J. V., & Yepes, V. (2017). Optimization of buttressed earth-retaining walls using hybrid harmony search algorithms. Engineering Structures, 134, 205-216. doi:10.1016/j.engstruct.2016.12.042 es_ES
dc.description.references Yepes, V., Alcala, J., Perea, C., & González-Vidosa, F. (2008). A parametric study of optimum earth-retaining walls by simulated annealing. Engineering Structures, 30(3), 821-830. doi:10.1016/j.engstruct.2007.05.023 es_ES
dc.description.references Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by Simulated Annealing. Science, 220(4598), 671-680. doi:10.1126/science.220.4598.671 es_ES
dc.description.references Medina, J. R. (2001). Estimation of Incident and Reflected Waves Using Simulated Annealing. Journal of Waterway, Port, Coastal, and Ocean Engineering, 127(4), 213-221. doi:10.1061/(asce)0733-950x(2001)127:4(213) es_ES
dc.description.references Glauber, R. J. (1963). Time‐Dependent Statistics of the Ising Model. Journal of Mathematical Physics, 4(2), 294-307. doi:10.1063/1.1703954 es_ES
dc.description.references Soke, A., & Bingul, Z. (2006). Hybrid genetic algorithm and simulated annealing for two-dimensional non-guillotine rectangular packing problems. Engineering Applications of Artificial Intelligence, 19(5), 557-567. doi:10.1016/j.engappai.2005.12.003 es_ES
dc.subject.ods 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem