Mostrar el registro sencillo del ítem
dc.contributor.author | Canovas Solbes, Alejandro | es_ES |
dc.contributor.author | REGO MAÑEZ, ALBERT | es_ES |
dc.contributor.author | Romero Martínez, José Oscar | es_ES |
dc.contributor.author | Lloret, Jaime | es_ES |
dc.date.accessioned | 2021-03-06T04:32:05Z | |
dc.date.available | 2021-03-06T04:32:05Z | |
dc.date.issued | 2020-01-15 | es_ES |
dc.identifier.issn | 1084-8045 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/163292 | |
dc.description.abstract | [EN] Nowadays, network infrastructures such as Software Defined Networks (SDN) achieve a huge computational power. This allows to add a high processing on the network nodes. In this paper, a multimedia traffic management system is presented. This system is based on estimation models of Quality of Experience (QoE) and also on the traffic patterns classification. In order to achieve this, a QoE estimation method has been modeled. This method allows for classifying the multimedia traffic from multimedia transmission patterns. In order to do this, the SDN controller gathers statistics from the network. The patterns used have been defined from a lineal combination of objective QoE measurements. The model has been defined by Bayesian regularized neural networks (BRNN). From this model, the system is able to classify several kind of traffic according to the quality perceived by the users. Then, a model has been developed to determine which video characteristics need to be changed to provide the user with the best possible quality in the critical moments of the transmission. The choice of these characteristics is based on the quality of service (QoS) parameters, such as delay, jitter, loss rate and bandwidth. Moreover, it is also based on subpatterns defined by clusters from the dataset and which represents network and video characteristics. When a critical network situation is given, the model selects, by using network parameters as entries, the subpattern with the most similar network condition. The minimum Euclidean distance between these entries and the network parameters of the subpatters is calculated to perform this selection. Both models work together to build a reliable multimedia traffic management system perfectly integrated into current network infrastructures, which is able to classify the traffic and solve critical situations changing the video characteristics, by using the SDN architecture. | es_ES |
dc.description.sponsorship | This work has been partially supported by the "Ministerio de Educacion, Cultura y Deporte", through the "Ayudas para contratos predoctorales de Formation del Profesorado Universitario FPU (Convocatoria 2015)", grant number FPU15/06837 and by the "Ministerio de Economia y Competitividad" in the "Programa Estatal de Fomento de la Investigation Cientffica y Tecnica de Excelencia, Subprograma Estatal de Generacion de Conocimiento" within the project under Grant TIN2017-84802-C2-1-P. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Journal of Network and Computer Applications | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Software defined network (SDN) | es_ES |
dc.subject | Machine learning | es_ES |
dc.subject | QoE | es_ES |
dc.subject | Traffic multimedia pattern | es_ES |
dc.subject.classification | INGENIERIA TELEMATICA | es_ES |
dc.title | A robust multimedia traffic SDN-Based management system using patterns and models of QoE estimation with BRNN | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.jnca.2019.102498 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MECD//FPU15%2F06837/ES/FPU15%2F06837/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TIN2017-84802-C2-1-P/ES/RED COGNITIVA DEFINIDA POR SOFTWARE PARA OPTIMIZAR Y SECURIZAR TRAFICO DE INTERNET DE LAS COSAS CON INFORMACION CRITICA/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions | es_ES |
dc.description.bibliographicCitation | Canovas Solbes, A.; Rego Mañez, A.; Romero Martínez, JO.; Lloret, J. (2020). A robust multimedia traffic SDN-Based management system using patterns and models of QoE estimation with BRNN. Journal of Network and Computer Applications. 150:1-14. https://doi.org/10.1016/j.jnca.2019.102498 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.jnca.2019.102498 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 14 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 150 | es_ES |
dc.relation.pasarela | S\409952 | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | Ministerio de Educación, Cultura y Deporte | es_ES |
dc.description.references | Cánovas, A., Taha, M., Lloret, J., & Tomás, J. (2018). Smart resource allocation for improving QoE in IP Multimedia Subsystems. Journal of Network and Computer Applications, 104, 107-116. doi:10.1016/j.jnca.2017.12.020 | es_ES |
dc.description.references | Canovas, A., Jimenez, J. M., Romero, O., & Lloret, J. (2018). Multimedia Data Flow Traffic Classification Using Intelligent Models Based on Traffic Patterns. IEEE Network, 32(6), 100-107. doi:10.1109/mnet.2018.1800121 | es_ES |
dc.description.references | Burden, F., & Winkler, D. (2008). Bayesian Regularization of Neural Networks. Artificial Neural Networks, 23-42. doi:10.1007/978-1-60327-101-1_3 | es_ES |
dc.description.references | Goodman, S. N. (2005). Introduction to Bayesian methods I: measuring the strength of evidence. Clinical Trials, 2(4), 282-290. doi:10.1191/1740774505cn098oa | es_ES |
dc.description.references | Hirschen, K., & Schäfer, M. (2006). Bayesian regularization neural networks for optimizing fluid flow processes. Computer Methods in Applied Mechanics and Engineering, 195(7-8), 481-500. doi:10.1016/j.cma.2005.01.015 | es_ES |
dc.description.references | Huang, X., Yuan, T., Qiao, G., & Ren, Y. (2018). Deep Reinforcement Learning for Multimedia Traffic Control in Software Defined Networking. IEEE Network, 32(6), 35-41. doi:10.1109/mnet.2018.1800097 | es_ES |
dc.description.references | Lin, Y. (2002). Data Mining and Knowledge Discovery, 6(3), 259-275. doi:10.1023/a:1015469627679 | es_ES |
dc.description.references | Lopez-Martin, M., Carro, B., Lloret, J., Egea, S., & Sanchez-Esguevillas, A. (2018). Deep Learning Model for Multimedia Quality of Experience Prediction Based on Network Flow Packets. IEEE Communications Magazine, 56(9), 110-117. doi:10.1109/mcom.2018.1701156 | es_ES |
dc.description.references | Hagan, M. T., & Menhaj, M. B. (1994). Training feedforward networks with the Marquardt algorithm. IEEE Transactions on Neural Networks, 5(6), 989-993. doi:10.1109/72.329697 | es_ES |
dc.description.references | Nguyen, T. T. T., & Armitage, G. (2008). A survey of techniques for internet traffic classification using machine learning. IEEE Communications Surveys & Tutorials, 10(4), 56-76. doi:10.1109/surv.2008.080406 | es_ES |
dc.description.references | Queiroz, W., Capretz, M. A. M., & Dantas, M. (2019). An approach for SDN traffic monitoring based on big data techniques. Journal of Network and Computer Applications, 131, 28-39. doi:10.1016/j.jnca.2019.01.016 | es_ES |
dc.description.references | Rego, A., Canovas, A., Jimenez, J. M., & Lloret, J. (2018). An Intelligent System for Video Surveillance in IoT Environments. IEEE Access, 6, 31580-31598. doi:10.1109/access.2018.2842034 | es_ES |
dc.description.references | Seshadrinathan, K., Soundararajan, R., Bovik, A. C., & Cormack, L. K. (2010). Study of Subjective and Objective Quality Assessment of Video. IEEE Transactions on Image Processing, 19(6), 1427-1441. doi:10.1109/tip.2010.2042111 | es_ES |
dc.description.references | Soysal, M., & Schmidt, E. G. (2010). Machine learning algorithms for accurate flow-based network traffic classification: Evaluation and comparison. Performance Evaluation, 67(6), 451-467. doi:10.1016/j.peva.2010.01.001 | es_ES |
dc.description.references | Tan, X., Xie, Y., Ma, H., Yu, S., & Hu, J. (2019). Recognizing the content types of network traffic based on a hybrid DNN-HMM model. Journal of Network and Computer Applications, 142, 51-62. doi:10.1016/j.jnca.2019.06.004 | es_ES |
dc.description.references | Tongaonkar, A., Torres, R., Iliofotou, M., Keralapura, R., & Nucci, A. (2015). Towards self adaptive network traffic classification. Computer Communications, 56, 35-46. doi:10.1016/j.comcom.2014.03.026 | es_ES |