- -

A robust multimedia traffic SDN-Based management system using patterns and models of QoE estimation with BRNN

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A robust multimedia traffic SDN-Based management system using patterns and models of QoE estimation with BRNN

Mostrar el registro completo del ítem

Canovas Solbes, A.; Rego Mañez, A.; Romero Martínez, JO.; Lloret, J. (2020). A robust multimedia traffic SDN-Based management system using patterns and models of QoE estimation with BRNN. Journal of Network and Computer Applications. 150:1-14. https://doi.org/10.1016/j.jnca.2019.102498

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/163292

Ficheros en el ítem

Metadatos del ítem

Título: A robust multimedia traffic SDN-Based management system using patterns and models of QoE estimation with BRNN
Autor: Canovas Solbes, Alejandro REGO MAÑEZ, ALBERT Romero Martínez, José Oscar Lloret, Jaime
Entidad UPV: Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions
Fecha difusión:
Resumen:
[EN] Nowadays, network infrastructures such as Software Defined Networks (SDN) achieve a huge computational power. This allows to add a high processing on the network nodes. In this paper, a multimedia traffic management ...[+]
Palabras clave: Software defined network (SDN) , Machine learning , QoE , Traffic multimedia pattern
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Journal of Network and Computer Applications. (issn: 1084-8045 )
DOI: 10.1016/j.jnca.2019.102498
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.jnca.2019.102498
Código del Proyecto:
info:eu-repo/grantAgreement/MECD//FPU15%2F06837/ES/FPU15%2F06837/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TIN2017-84802-C2-1-P/ES/RED COGNITIVA DEFINIDA POR SOFTWARE PARA OPTIMIZAR Y SECURIZAR TRAFICO DE INTERNET DE LAS COSAS CON INFORMACION CRITICA/
Agradecimientos:
This work has been partially supported by the "Ministerio de Educacion, Cultura y Deporte", through the "Ayudas para contratos predoctorales de Formation del Profesorado Universitario FPU (Convocatoria 2015)", grant number ...[+]
Tipo: Artículo

References

Cánovas, A., Taha, M., Lloret, J., & Tomás, J. (2018). Smart resource allocation for improving QoE in IP Multimedia Subsystems. Journal of Network and Computer Applications, 104, 107-116. doi:10.1016/j.jnca.2017.12.020

Canovas, A., Jimenez, J. M., Romero, O., & Lloret, J. (2018). Multimedia Data Flow Traffic Classification Using Intelligent Models Based on Traffic Patterns. IEEE Network, 32(6), 100-107. doi:10.1109/mnet.2018.1800121

Burden, F., & Winkler, D. (2008). Bayesian Regularization of Neural Networks. Artificial Neural Networks, 23-42. doi:10.1007/978-1-60327-101-1_3 [+]
Cánovas, A., Taha, M., Lloret, J., & Tomás, J. (2018). Smart resource allocation for improving QoE in IP Multimedia Subsystems. Journal of Network and Computer Applications, 104, 107-116. doi:10.1016/j.jnca.2017.12.020

Canovas, A., Jimenez, J. M., Romero, O., & Lloret, J. (2018). Multimedia Data Flow Traffic Classification Using Intelligent Models Based on Traffic Patterns. IEEE Network, 32(6), 100-107. doi:10.1109/mnet.2018.1800121

Burden, F., & Winkler, D. (2008). Bayesian Regularization of Neural Networks. Artificial Neural Networks, 23-42. doi:10.1007/978-1-60327-101-1_3

Goodman, S. N. (2005). Introduction to Bayesian methods I: measuring the strength of evidence. Clinical Trials, 2(4), 282-290. doi:10.1191/1740774505cn098oa

Hirschen, K., & Schäfer, M. (2006). Bayesian regularization neural networks for optimizing fluid flow processes. Computer Methods in Applied Mechanics and Engineering, 195(7-8), 481-500. doi:10.1016/j.cma.2005.01.015

Huang, X., Yuan, T., Qiao, G., & Ren, Y. (2018). Deep Reinforcement Learning for Multimedia Traffic Control in Software Defined Networking. IEEE Network, 32(6), 35-41. doi:10.1109/mnet.2018.1800097

Lin, Y. (2002). Data Mining and Knowledge Discovery, 6(3), 259-275. doi:10.1023/a:1015469627679

Lopez-Martin, M., Carro, B., Lloret, J., Egea, S., & Sanchez-Esguevillas, A. (2018). Deep Learning Model for Multimedia Quality of Experience Prediction Based on Network Flow Packets. IEEE Communications Magazine, 56(9), 110-117. doi:10.1109/mcom.2018.1701156

Hagan, M. T., & Menhaj, M. B. (1994). Training feedforward networks with the Marquardt algorithm. IEEE Transactions on Neural Networks, 5(6), 989-993. doi:10.1109/72.329697

Nguyen, T. T. T., & Armitage, G. (2008). A survey of techniques for internet traffic classification using machine learning. IEEE Communications Surveys & Tutorials, 10(4), 56-76. doi:10.1109/surv.2008.080406

Queiroz, W., Capretz, M. A. M., & Dantas, M. (2019). An approach for SDN traffic monitoring based on big data techniques. Journal of Network and Computer Applications, 131, 28-39. doi:10.1016/j.jnca.2019.01.016

Rego, A., Canovas, A., Jimenez, J. M., & Lloret, J. (2018). An Intelligent System for Video Surveillance in IoT Environments. IEEE Access, 6, 31580-31598. doi:10.1109/access.2018.2842034

Seshadrinathan, K., Soundararajan, R., Bovik, A. C., & Cormack, L. K. (2010). Study of Subjective and Objective Quality Assessment of Video. IEEE Transactions on Image Processing, 19(6), 1427-1441. doi:10.1109/tip.2010.2042111

Soysal, M., & Schmidt, E. G. (2010). Machine learning algorithms for accurate flow-based network traffic classification: Evaluation and comparison. Performance Evaluation, 67(6), 451-467. doi:10.1016/j.peva.2010.01.001

Tan, X., Xie, Y., Ma, H., Yu, S., & Hu, J. (2019). Recognizing the content types of network traffic based on a hybrid DNN-HMM model. Journal of Network and Computer Applications, 142, 51-62. doi:10.1016/j.jnca.2019.06.004

Tongaonkar, A., Torres, R., Iliofotou, M., Keralapura, R., & Nucci, A. (2015). Towards self adaptive network traffic classification. Computer Communications, 56, 35-46. doi:10.1016/j.comcom.2014.03.026

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem