Molner, S. P. (1999). The Art of Molecular Dynamics Simulation (Rapaport, D. C.). Journal of Chemical Education, 76(2), 171. doi:10.1021/ed076p171
Fermi, E.; Pasta, J.; Ulam, S. Studies of Nonlinear Problems I, Los Alamos Report LA 1940; Los Alamos Scientific Laboratory, 1955; reproduced in Nonlinear Wave Motion. Providence, RI, 1974.
Alder, B. J., & Wainwright, T. E. (1959). Studies in Molecular Dynamics. I. General Method. The Journal of Chemical Physics, 31(2), 459-466. doi:10.1063/1.1730376
[+]
Molner, S. P. (1999). The Art of Molecular Dynamics Simulation (Rapaport, D. C.). Journal of Chemical Education, 76(2), 171. doi:10.1021/ed076p171
Fermi, E.; Pasta, J.; Ulam, S. Studies of Nonlinear Problems I, Los Alamos Report LA 1940; Los Alamos Scientific Laboratory, 1955; reproduced in Nonlinear Wave Motion. Providence, RI, 1974.
Alder, B. J., & Wainwright, T. E. (1959). Studies in Molecular Dynamics. I. General Method. The Journal of Chemical Physics, 31(2), 459-466. doi:10.1063/1.1730376
Bornemann, F. A., Nettesheim, P., & Schütte, C. (1996). Quantum‐classical molecular dynamics as an approximation to full quantum dynamics. The Journal of Chemical Physics, 105(3), 1074-1083. doi:10.1063/1.471952
DOLTSINIS, N. L., & MARX, D. (2002). FIRST PRINCIPLES MOLECULAR DYNAMICS INVOLVING EXCITED STATES AND NONADIABATIC TRANSITIONS. Journal of Theoretical and Computational Chemistry, 01(02), 319-349. doi:10.1142/s0219633602000257
Runge, E., & Gross, E. K. U. (1984). Density-Functional Theory for Time-Dependent Systems. Physical Review Letters, 52(12), 997-1000. doi:10.1103/physrevlett.52.997
Marques, M. A. L., Maitra, N. T., Nogueira, F. M. S., Gross, E. K. U., & Rubio, A. (Eds.). (2012). Fundamentals of Time-Dependent Density Functional Theory. Lecture Notes in Physics. doi:10.1007/978-3-642-23518-4
Verlet, L. (1967). Computer «Experiments» on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules. Physical Review, 159(1), 98-103. doi:10.1103/physrev.159.98
Hairer, E., & Wanner, G. (1996). Solving Ordinary Differential Equations II. Springer Series in Computational Mathematics. doi:10.1007/978-3-642-05221-7
Castro, A., Marques, M. A. L., & Rubio, A. (2004). Propagators for the time-dependent Kohn–Sham equations. The Journal of Chemical Physics, 121(8), 3425-3433. doi:10.1063/1.1774980
Schleife, A., Draeger, E. W., Kanai, Y., & Correa, A. A. (2012). Plane-wave pseudopotential implementation of explicit integrators for time-dependent Kohn-Sham equations in large-scale simulations. The Journal of Chemical Physics, 137(22), 22A546. doi:10.1063/1.4758792
Russakoff, A., Li, Y., He, S., & Varga, K. (2016). Accuracy and computational efficiency of real-time subspace propagation schemes for the time-dependent density functional theory. The Journal of Chemical Physics, 144(20), 204125. doi:10.1063/1.4952646
Kidd, D., Covington, C., & Varga, K. (2017). Exponential integrators in time-dependent density-functional calculations. Physical Review E, 96(6). doi:10.1103/physreve.96.063307
Dewhurst, J. K., Krieger, K., Sharma, S., & Gross, E. K. U. (2016). An efficient algorithm for time propagation as applied to linearized augmented plane wave method. Computer Physics Communications, 209, 92-95. doi:10.1016/j.cpc.2016.09.001
Akama, T., Kobayashi, O., & Nanbu, S. (2015). Development of efficient time-evolution method based on three-term recurrence relation. The Journal of Chemical Physics, 142(20), 204104. doi:10.1063/1.4921465
Kolesov, G., Grånäs, O., Hoyt, R., Vinichenko, D., & Kaxiras, E. (2015). Real-Time TD-DFT with Classical Ion Dynamics: Methodology and Applications. Journal of Chemical Theory and Computation, 12(2), 466-476. doi:10.1021/acs.jctc.5b00969
Schaffhauser, P., & Kümmel, S. (2016). Using time-dependent density functional theory in real time for calculating electronic transport. Physical Review B, 93(3). doi:10.1103/physrevb.93.035115
O’Rourke, C., & Bowler, D. R. (2015). Linear scaling density matrix real time TDDFT: Propagator unitarity and matrix truncation. The Journal of Chemical Physics, 143(10), 102801. doi:10.1063/1.4919128
Oliveira, M. J. T., Mignolet, B., Kus, T., Papadopoulos, T. A., Remacle, F., & Verstraete, M. J. (2015). Computational Benchmarking for Ultrafast Electron Dynamics: Wave Function Methods vs Density Functional Theory. Journal of Chemical Theory and Computation, 11(5), 2221-2233. doi:10.1021/acs.jctc.5b00167
Zhu, Y., & Herbert, J. M. (2018). Self-consistent predictor/corrector algorithms for stable and efficient integration of the time-dependent Kohn-Sham equation. The Journal of Chemical Physics, 148(4), 044117. doi:10.1063/1.5004675
Rehn, D. A., Shen, Y., Buchholz, M. E., Dubey, M., Namburu, R., & Reed, E. J. (2019). ODE integration schemes for plane-wave real-time time-dependent density functional theory. The Journal of Chemical Physics, 150(1), 014101. doi:10.1063/1.5056258
Gómez Pueyo, A., Marques, M. A. L., Rubio, A., & Castro, A. (2018). Propagators for the Time-Dependent Kohn–Sham Equations: Multistep, Runge–Kutta, Exponential Runge–Kutta, and Commutator Free Magnus Methods. Journal of Chemical Theory and Computation, 14(6), 3040-3052. doi:10.1021/acs.jctc.8b00197
Stoer, J., & Bulirsch, R. (2002). Introduction to Numerical Analysis. doi:10.1007/978-0-387-21738-3
Blanes, S., & Casas, F. (2017). A Concise Introduction to Geometric Numerical Integration. doi:10.1201/b21563
Flocard, H., Koonin, S. E., & Weiss, M. S. (1978). Three-dimensional time-dependent Hartree-Fock calculations: Application toO16+O16collisions. Physical Review C, 17(5), 1682-1699. doi:10.1103/physrevc.17.1682
Chen, R., & Guo, H. (1999). The Chebyshev propagator for quantum systems. Computer Physics Communications, 119(1), 19-31. doi:10.1016/s0010-4655(98)00179-9
Hochbruck, M., & Lubich, C. (1997). On Krylov Subspace Approximations to the Matrix Exponential Operator. SIAM Journal on Numerical Analysis, 34(5), 1911-1925. doi:10.1137/s0036142995280572
Frapiccini, A. L., Hamido, A., Schröter, S., Pyke, D., Mota-Furtado, F., O’Mahony, P. F., … Piraux, B. (2014). Explicit schemes for time propagating many-body wave functions. Physical Review A, 89(2). doi:10.1103/physreva.89.023418
Caliari, M., Kandolf, P., Ostermann, A., & Rainer, S. (2016). The Leja Method Revisited: Backward Error Analysis for the Matrix Exponential. SIAM Journal on Scientific Computing, 38(3), A1639-A1661. doi:10.1137/15m1027620
Schaefer, I., Tal-Ezer, H., & Kosloff, R. (2017). Semi-global approach for propagation of the time-dependent Schrödinger equation for time-dependent and nonlinear problems. Journal of Computational Physics, 343, 368-413. doi:10.1016/j.jcp.2017.04.017
Trotter, H. F. (1959). On the product of semi-groups of operators. Proceedings of the American Mathematical Society, 10(4), 545-545. doi:10.1090/s0002-9939-1959-0108732-6
Strang, G. (1968). On the Construction and Comparison of Difference Schemes. SIAM Journal on Numerical Analysis, 5(3), 506-517. doi:10.1137/0705041
Feit, M. ., Fleck, J. ., & Steiger, A. (1982). Solution of the Schrödinger equation by a spectral method. Journal of Computational Physics, 47(3), 412-433. doi:10.1016/0021-9991(82)90091-2
Suzuki, M. (1990). Fractal decomposition of exponential operators with applications to many-body theories and Monte Carlo simulations. Physics Letters A, 146(6), 319-323. doi:10.1016/0375-9601(90)90962-n
Suzuki, M. (1992). General theory of higher-order decomposition of exponential operators and symplectic integrators. Physics Letters A, 165(5-6), 387-395. doi:10.1016/0375-9601(92)90335-j
Yoshida, H. (1990). Construction of higher order symplectic integrators. Physics Letters A, 150(5-7), 262-268. doi:10.1016/0375-9601(90)90092-3
Sugino, O., & Miyamoto, Y. (1999). Density-functional approach to electron dynamics: Stable simulation under a self-consistent field. Physical Review B, 59(4), 2579-2586. doi:10.1103/physrevb.59.2579
McLachlan, R. I., & Quispel, G. R. W. (2002). Splitting methods. Acta Numerica, 11, 341-434. doi:10.1017/s0962492902000053
Ascher, U. M., Ruuth, S. J., & Wetton, B. T. R. (1995). Implicit-Explicit Methods for Time-Dependent Partial Differential Equations. SIAM Journal on Numerical Analysis, 32(3), 797-823. doi:10.1137/0732037
Cooper, G. J., & Sayfy, A. (1983). Additive Runge-Kutta methods for stiff ordinary differential equations. Mathematics of Computation, 40(161), 207-218. doi:10.1090/s0025-5718-1983-0679441-1
Hochbruck, M., Lubich, C., & Selhofer, H. (1998). Exponential Integrators for Large Systems of Differential Equations. SIAM Journal on Scientific Computing, 19(5), 1552-1574. doi:10.1137/s1064827595295337
Hochbruck, M., & Ostermann, A. (2005). Exponential Runge–Kutta methods for parabolic problems. Applied Numerical Mathematics, 53(2-4), 323-339. doi:10.1016/j.apnum.2004.08.005
Hochbruck, M., & Ostermann, A. (2005). Explicit Exponential Runge--Kutta Methods for Semilinear Parabolic Problems. SIAM Journal on Numerical Analysis, 43(3), 1069-1090. doi:10.1137/040611434
Hochbruck, M., & Ostermann, A. (2010). Exponential integrators. Acta Numerica, 19, 209-286. doi:10.1017/s0962492910000048
Houston, W. V. (1940). Acceleration of Electrons in a Crystal Lattice. Physical Review, 57(3), 184-186. doi:10.1103/physrev.57.184
Chen, Z., & Polizzi, E. (2010). Spectral-based propagation schemes for time-dependent quantum systems with application to carbon nanotubes. Physical Review B, 82(20). doi:10.1103/physrevb.82.205410
Sato, S. A., & Yabana, K. (2014). Efficient basis expansion for describing linear and nonlinear electron dynamics in crystalline solids. Physical Review B, 89(22). doi:10.1103/physrevb.89.224305
Wang, Z., Li, S.-S., & Wang, L.-W. (2015). Efficient Real-Time Time-Dependent Density Functional Theory Method and its Application to a Collision of an Ion with a 2D Material. Physical Review Letters, 114(6). doi:10.1103/physrevlett.114.063004
Magnus, W. (1954). On the exponential solution of differential equations for a linear operator. Communications on Pure and Applied Mathematics, 7(4), 649-673. doi:10.1002/cpa.3160070404
Blanes, S., Casas, F., Oteo, J. A., & Ros, J. (2009). The Magnus expansion and some of its applications. Physics Reports, 470(5-6), 151-238. doi:10.1016/j.physrep.2008.11.001
Nettesheim, P., Bornemann, F. A., Schmidt, B., & Schütte, C. (1996). An explicit and symplectic integrator for quantum-classical molecular dynamics. Chemical Physics Letters, 256(6), 581-588. doi:10.1016/0009-2614(96)00471-x
Hochbruck, M., & Lubich, C. (1999). A Bunch of Time Integrators for Quantum/Classical Molecular Dynamics. Lecture Notes in Computational Science and Engineering, 421-432. doi:10.1007/978-3-642-58360-5_24
Hochbruck, M., & Lubich, C. (1999). Bit Numerical Mathematics, 39(4), 620-645. doi:10.1023/a:1022335122807
Nettesheim, P., & Reich, S. (1999). Symplectic Multiple-Time-Stepping Integrators for Quantum-Classical Molecular Dynamics. Lecture Notes in Computational Science and Engineering, 412-420. doi:10.1007/978-3-642-58360-5_23
Nettesheim, P., & Schütte, C. (1999). Numerical Integrators for Quantum-Classical Molecular Dynamics. Lecture Notes in Computational Science and Engineering, 396-411. doi:10.1007/978-3-642-58360-5_22
Reich, S. (1999). Multiple Time Scales in Classical and Quantum–Classical Molecular Dynamics. Journal of Computational Physics, 151(1), 49-73. doi:10.1006/jcph.1998.6142
Jiang, H., & Zhao, X. S. (2000). New propagators for quantum-classical molecular dynamics simulations. The Journal of Chemical Physics, 113(3), 930-935. doi:10.1063/1.481873
Grochowski, P., & Lesyng, B. (2003). Extended Hellmann–Feynman forces, canonical representations, and exponential propagators in the mixed quantum-classical molecular dynamics. The Journal of Chemical Physics, 119(22), 11541-11555. doi:10.1063/1.1624062
Blanes, S., & Moan, P. C. (2006). Fourth- and sixth-order commutator-free Magnus integrators for linear and non-linear dynamical systems. Applied Numerical Mathematics, 56(12), 1519-1537. doi:10.1016/j.apnum.2005.11.004
Bader, P., Blanes, S., & Kopylov, N. (2018). Exponential propagators for the Schrödinger equation with a time-dependent potential. The Journal of Chemical Physics, 148(24), 244109. doi:10.1063/1.5036838
Marques, M. (2003). octopus: a first-principles tool for excited electron–ion dynamics. Computer Physics Communications, 151(1), 60-78. doi:10.1016/s0010-4655(02)00686-0
Castro, A., Appel, H., Oliveira, M., Rozzi, C. A., Andrade, X., Lorenzen, F., … Rubio, A. (2006). octopus: a tool for the application of time-dependent density functional theory. physica status solidi (b), 243(11), 2465-2488. doi:10.1002/pssb.200642067
Schwerdtfeger, P. (2011). The Pseudopotential Approximation in Electronic Structure Theory. ChemPhysChem, 12(17), 3143-3155. doi:10.1002/cphc.201100387
Alonso, J. L., Castro, A., Clemente-Gallardo, J., Cuchí, J. C., Echenique, P., & Falceto, F. (2011). Statistics and Nosé formalism for Ehrenfest dynamics. Journal of Physics A: Mathematical and Theoretical, 44(39), 395004. doi:10.1088/1751-8113/44/39/395004
Iserles, A., & Nørsett, S. P. (1999). On the solution of linear differential equations in Lie groups. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 357(1754), 983-1019. doi:10.1098/rsta.1999.0362
Munthe–Kaas, H., & Owren, B. (1999). Computations in a free Lie algebra. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 357(1754), 957-981. doi:10.1098/rsta.1999.0361
Alvermann, A., & Fehske, H. (2011). High-order commutator-free exponential time-propagation of driven quantum systems. Journal of Computational Physics, 230(15), 5930-5956. doi:10.1016/j.jcp.2011.04.006
Blanes, S., & Moan, P. C. (2000). Splitting methods for the time-dependent Schrödinger equation. Physics Letters A, 265(1-2), 35-42. doi:10.1016/s0375-9601(99)00866-x
Auer, N., Einkemmer, L., Kandolf, P., & Ostermann, A. (2018). Magnus integrators on multicore CPUs and GPUs. Computer Physics Communications, 228, 115-122. doi:10.1016/j.cpc.2018.02.019
Thalhammer, M. (2006). A fourth-order commutator-free exponential integrator for nonautonomous differential equations. SIAM Journal on Numerical Analysis, 44(2), 851-864. doi:10.1137/05063042
Bader, P., Blanes, S., Ponsoda, E., & Seydaoğlu, M. (2017). Symplectic integrators for the matrix Hill equation. Journal of Computational and Applied Mathematics, 316, 47-59. doi:10.1016/j.cam.2016.09.041
[-]