- -

Evolutionary gaming approach for decision making of Tier-3 Internet service provider networks migration to SoDIP6 networks

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Evolutionary gaming approach for decision making of Tier-3 Internet service provider networks migration to SoDIP6 networks

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Dawadi, Babu R. es_ES
dc.contributor.author Rawat, Danda B. es_ES
dc.contributor.author Joshi, Shashidhar R. es_ES
dc.contributor.author Manzoni, Pietro es_ES
dc.date.accessioned 2021-03-09T04:32:20Z
dc.date.available 2021-03-09T04:32:20Z
dc.date.issued 2020-07-25 es_ES
dc.identifier.issn 1074-5351 es_ES
dc.identifier.uri http://hdl.handle.net/10251/163482
dc.description This is the peer reviewed version of the following article: Dawadi, BR, Rawat, DB, Joshi, SR, Manzoni, P. Evolutionary gaming approach for decision making of Tier-3 Internet service provider networks migration to SoDIP6 networks. Int J Commun Syst. 2020; 33:e4399, which has been published in final form at https://doi.org/10.1002/dac.4399. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. es_ES
dc.description.abstract [EN] With the increasing number of Internet of Things (IoT) devices, current networking world is suffering in terms of management and operations with lack of IPv4 addresses leading to issues like network address translation (NAT) proliferation, security and quality of services. Software-defined networking (SDN) and Internet Protocol version 6 (IPv6) are the new networking paradigms evolved to address related issues of legacy IPv4 networking. To adapt with global competitive environment and avoid all existing issues in legacy networking system, network service providers have to migrate their networks into IPv6 and SDN-enabled networks. But immediate transformations of existing network are not viable due to several factors like higher cost of migration, lack of technical human resources, lack of standards and protocols during transitions, and many more. In this paper, we present the migration analysis for proper decision making of network transition in terms of customer demand, traffic engineering, and organizational strength with operation expenditure for network migration using evolutionary gaming approach. Joint migration to SDN-enabled IPv6 network from game theoretic perspective is modeled and is validated using numerical results obtained from simulations. Our empirical analysis shows the evolutionary process of network migration while different internal and external factors in the organization affect the overall migration. Evolutionary game in migration planning is supportive in decision making for service providers to develop suitable strategy for their network migration. The proposed approach for migration decision making is mostly applicable to fairly sustained service providers who lack economics, regulation/policy, and resources strengths. es_ES
dc.description.sponsorship ERASMUS+, Grant/Award Number: KA107; UGC-NP, Grant/Award Number: FRG-074/75-Engg-01; NTNU-EnPE-MSESSD; US National Science Foundation, Grant/Award Numbers: CNS 1650831, HRD 1828811; NAST es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof International Journal of Communication Systems es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Evolutionary gaming es_ES
dc.subject IPv6 network es_ES
dc.subject ISP network migration es_ES
dc.subject SoDIP6 es_ES
dc.subject Software-defined network es_ES
dc.subject.classification ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES es_ES
dc.title Evolutionary gaming approach for decision making of Tier-3 Internet service provider networks migration to SoDIP6 networks es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/dac.4399 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/Erasmus+/KA107/EU/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NSF//1828811/US/HBCU-RISE: Security Engineering for Resilient Mobile Cyber-Physical Systems/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NSF//1650831/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UGC//FRG%2F74_75%2FEngg-1/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors es_ES
dc.description.bibliographicCitation Dawadi, BR.; Rawat, DB.; Joshi, SR.; Manzoni, P. (2020). Evolutionary gaming approach for decision making of Tier-3 Internet service provider networks migration to SoDIP6 networks. International Journal of Communication Systems. 33(11):1-17. https://doi.org/10.1002/dac.4399 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/dac.4399 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 17 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 33 es_ES
dc.description.issue 11 es_ES
dc.relation.pasarela S\430018 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder National Science Foundation, EEUU es_ES
dc.contributor.funder University Grants Commission, India es_ES
dc.contributor.funder Nepal Academy of Science and Technology es_ES
dc.contributor.funder Norwegian University of Science and Technology es_ES
dc.description.references Livadariu, I., Elmokashfi, A., & Dhamdhere, A. (2017). On IPv4 transfer markets: Analyzing reported transfers and inferring transfers in the wild. Computer Communications, 111, 105-119. doi:10.1016/j.comcom.2017.07.012 es_ES
dc.description.references Dawadi, B. R., Rawat, D. B., & Joshi, S. R. (2019). Software Defined IPv6 Network: A New Paradigm for Future Networking. Journal of the Institute of Engineering, 15(2), 1-13. doi:10.3126/jie.v15i2.27636 es_ES
dc.description.references Rizvi, S. N., Raumer, D., Wohlfart, F., & Carle, G. (2015). Towards carrier grade SDNs. Computer Networks, 92, 218-226. doi:10.1016/j.comnet.2015.09.029 es_ES
dc.description.references Sezer, S., Scott-Hayward, S., Chouhan, P., Fraser, B., Lake, D., Finnegan, J., … Rao, N. (2013). Are we ready for SDN? Implementation challenges for software-defined networks. IEEE Communications Magazine, 51(7), 36-43. doi:10.1109/mcom.2013.6553676 es_ES
dc.description.references ONF TR‐506.SDN migration considerations and use cases.;2014.https://www.opennetworking.org/wp-content/uploads/2014/10/sb-sdn-migration-use-cases.pdf. es_ES
dc.description.references Raza, M. H., Sivakumar, S. C., Nafarieh, A., & Robertson, B. (2014). A Comparison of Software Defined Network (SDN) Implementation Strategies. Procedia Computer Science, 32, 1050-1055. doi:10.1016/j.procs.2014.05.532 es_ES
dc.description.references Wu, P., Cui, Y., Wu, J., Liu, J., & Metz, C. (2013). Transition from IPv4 to IPv6: A State-of-the-Art Survey. IEEE Communications Surveys & Tutorials, 15(3), 1407-1424. doi:10.1109/surv.2012.110112.00200 es_ES
dc.description.references Contreras, L. M., Doolan, P., Lønsethagen, H., & López, D. R. (2015). Operational, organizational and business challenges for network operators in the context of SDN and NFV. Computer Networks, 92, 211-217. doi:10.1016/j.comnet.2015.07.016 es_ES
dc.description.references Sandhya, Sinha, Y., & Haribabu, K. (2017). A survey: Hybrid SDN. Journal of Network and Computer Applications, 100, 35-55. doi:10.1016/j.jnca.2017.10.003 es_ES
dc.description.references ON.LAB.Driving SDN adoption in service provider networks.;2014.http://onosproject.org/wp-content/uploads/2014/11/Whitepaper-Service-Provider-SDN-final.pdf. es_ES
dc.description.references SANDVINE. Carrier grade NAT: Mitigate IPv4 address exhaustion while maintaining network visibility.https://www.sandvine.com/hubfs/Procera_Live_Site_Files/PDF_Live_Site/Solutions_brief/SB_CGNAT.pdf. Published2018. . es_ES
dc.description.references F5. Carrier‐grade NAT (CGNAT) for service providers.https://www.f5.com/services/resources/use-cases/carrier-grade-nat-for-service-providers. Accessed September 20 2019. es_ES
dc.description.references Trinh, T. A., Gyarmati, L., & Sallai, G. (2010). Migrating to IPv6: A game-theoretic perspective. IEEE Local Computer Network Conference. doi:10.1109/lcn.2010.5735739 es_ES
dc.description.references Nikkhah, M. (2016). Maintaining the progress of IPv6 adoption. Computer Networks, 102, 50-69. doi:10.1016/j.comnet.2016.02.027 es_ES
dc.description.references Hu, T., Yi, P., Zhang, J., & Lan, J. (2018). A distributed decision mechanism for controller load balancing based on switch migration in SDN. China Communications, 15(10), 129-142. doi:10.1109/cc.2018.8485475 es_ES
dc.description.references TaoP YingC SunZ TanS WangP SunZ.The controller placement of software‐defined networks based on minimum delay and load balancing. In:2018 IEEE 16th Intl Conf on Dependable Autonomic and Secure Computing 16th Intl Conf on Pervasive Intelligence and Computing 4th Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology Congress (DASC/PiCom/DataCom/CyberSciTech).;2018:310‐313. es_ES
dc.description.references Wang, K.-Y., Kao, S.-J., & Kao, M.-T. (2018). An efficient load adjustment for balancing multiple controllers in reliable SDN systems. 2018 IEEE International Conference on Applied System Invention (ICASI). doi:10.1109/icasi.2018.8394323 es_ES
dc.description.references Xu, H., Li, X.-Y., Huang, L., Deng, H., Huang, H., & Wang, H. (2017). Incremental Deployment and Throughput Maximization Routing for a Hybrid SDN. IEEE/ACM Transactions on Networking, 25(3), 1861-1875. doi:10.1109/tnet.2017.2657643 es_ES
dc.description.references Khorramizadeh, M., & Ahmadi, V. (2018). Capacity and load-aware software-defined network controller placement in heterogeneous environments. Computer Communications, 129, 226-247. doi:10.1016/j.comcom.2018.07.037 es_ES
dc.description.references LanW LiF LiuX QiuY.A dynamic load balancing mechanism for distributed controllers in software‐defined networking. In:2018 10th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA).;2018:259‐262. es_ES
dc.description.references TR‐506 O.SDN Migration considerations and use cases.;2014. es_ES
dc.description.references Kobayashi, M., Seetharaman, S., Parulkar, G., Appenzeller, G., Little, J., van Reijendam, J., … McKeown, N. (2014). Maturing of OpenFlow and Software-defined Networking through deployments. Computer Networks, 61, 151-175. doi:10.1016/j.bjp.2013.10.011 es_ES
dc.description.references BabikerH NikolovaI ChittimaneniKK.Deploying IPv6 in the Google Enterprise Network. Lessons learned. In:Proceedings of the 25th International Conference on Large Installation System Administration.;2011:10. es_ES
dc.description.references APNIC. IPv6 capability measurement.https://stats.labs.apnic.net/ipv6. Accessed February 15 2020. es_ES
dc.description.references Google Incl. IPv6 user access status.https://www.google.com/intl/en/ipv6/statistics.html. Accessed February 16 2020. es_ES
dc.description.references Abdullah, S. A. (2019). SEUI-64, bits an IPv6 addressing strategy to mitigate reconnaissance attacks. Engineering Science and Technology, an International Journal, 22(2), 667-672. doi:10.1016/j.jestch.2018.11.012 es_ES
dc.description.references KreutzD RamosF VerissimoP RothenbergCE AzodolmolkyS UhligS.Software‐defined networking: A comprehensive survey.arXiv Prepr arXiv14060440.2014. es_ES
dc.description.references DawadiBR RawatDB JoshiSR KeitschMM.Recommendations for energy efficient SoDIP6 network deployment at the early stage rural ICT expansion of Nepal. In: 2019International Conference on Computing Networking and Communications ICNC 2019.;2019.https://doi.org/10.1109/ICCNC.2019.8685567 es_ES
dc.description.references WintherM.Tier 1 isps: what they are and why they are important. IDC White Pap2006:1‐13. es_ES
dc.description.references DawadiBR RawatDB JoshiSR.Evolutionary dynamics of service provider legacy network migration to software defined IPv6 network. In:International Conference on Computing and Information Technology;2019:245‐257. es_ES
dc.description.references BriainDÓ DenieffeD KavanaghY OkelloD.A proposed architecture for distributed Internet eXchange Points in developing countries. In:2018 IST‐Africa Week Conference (IST‐Africa).;2018:Page‐‐1. es_ES
dc.description.references ChatzisN SmaragdakisG FeldmannA.On the importance of Internet eXchange Points for today's Internet ecosystem.arXiv Prepr arXiv13075264.2013. es_ES
dc.description.references RyanPS GersonJ.A primer on Internet exchange points for policymakers and non‐engineers.Available SSRN 2128103.2012. es_ES
dc.description.references BogineniK.Introducing ONOS: A SDN network operating system for service providers.White Pap.2014. es_ES
dc.description.references Karakus, M., & Durresi, A. (2018). Economic Viability of Software Defined Networking (SDN). Computer Networks, 135, 81-95. doi:10.1016/j.comnet.2018.02.015 es_ES
dc.description.references Shakkottai, S., & Srikant, R. (2006). Economics of Network Pricing With Multiple ISPs. IEEE/ACM Transactions on Networking, 14(6), 1233-1245. doi:10.1109/tnet.2006.886393 es_ES
dc.description.references Weiss, M. B., & Shin, S. (2002). Internet Interconnection Economic Model and its Analysis: Peering and Settlement. Communication Systems, 215-231. doi:10.1007/978-0-387-35600-6_10 es_ES
dc.description.references De Souza, E. P., Ferreira, E. M., & Neves, A. G. M. (2018). Fixation probabilities for the Moran process in evolutionary games with two strategies: graph shapes and large population asymptotics. Journal of Mathematical Biology, 78(4), 1033-1065. doi:10.1007/s00285-018-1300-4 es_ES
dc.description.references Klimek, P., Thurner, S., & Hanel, R. (2010). Evolutionary dynamics from a variational principle. Physical Review E, 82(1). doi:10.1103/physreve.82.011901 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem