- -

Evaluating the Effectiveness of COVID-19 Bluetooth-Based Smartphone Contact Tracing Applications

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Evaluating the Effectiveness of COVID-19 Bluetooth-Based Smartphone Contact Tracing Applications

Mostrar el registro completo del ítem

Hernández-Orallo, E.; Tavares De Araujo Cesariny Calafate, CM.; Cano, J.; Manzoni, P. (2020). Evaluating the Effectiveness of COVID-19 Bluetooth-Based Smartphone Contact Tracing Applications. Applied Sciences. 10(20):1-19. https://doi.org/10.3390/app10207113

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/163589

Ficheros en el ítem

Metadatos del ítem

Título: Evaluating the Effectiveness of COVID-19 Bluetooth-Based Smartphone Contact Tracing Applications
Autor: Hernández-Orallo, Enrique Tavares De Araujo Cesariny Calafate, Carlos Miguel Cano, Juan-Carlos Manzoni, Pietro
Entidad UPV: Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors
Fecha difusión:
Resumen:
[EN] One of the strategies to control the spread of infectious diseases is based on the use of specialized applications for smartphones. These apps offer the possibility, once individuals are detected to be infected, to ...[+]
Palabras clave: Digital epidemiology , COVID-19 , Mobile computing , Opportunistic networking , Mobile crowdsensing , Epidemic modeling
Derechos de uso: Reconocimiento (by)
Fuente:
Applied Sciences. (eissn: 2076-3417 )
DOI: 10.3390/app10207113
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/app10207113
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-096384-B-I00/ES/SOLUCIONES PARA UNA GESTION EFICIENTE DEL TRAFICO VEHICULAR BASADAS EN SISTEMAS Y SERVICIOS EN RED/
Agradecimientos:
This work was partially supported by the "Ministerio de Ciencia, Innovacion y Universidades, Programa Estatal de Investigacion, Desarrollo e Innovacion Orientada a los Retos de la Sociedad, Proyectos I+D+I 2018", Spain, ...[+]
Tipo: Artículo

References

Li, R., Rivers, C., Tan, Q., Murray, M. B., Toner, E., & Lipsitch, M. (2020). The demand for inpatient and ICU beds for COVID-19 in the US: lessons from Chinese cities. doi:10.1101/2020.03.09.20033241

(2020). Contact Transmission of COVID-19 in South Korea: Novel Investigation Techniques for Tracing Contacts. Osong Public Health and Research Perspectives, 11(1), 60-63. doi:10.24171/j.phrp.2020.11.1.09

Eames, K. T. D., & Keeling, M. J. (2003). Contact tracing and disease control. Proceedings of the Royal Society of London. Series B: Biological Sciences, 270(1533), 2565-2571. doi:10.1098/rspb.2003.2554 [+]
Li, R., Rivers, C., Tan, Q., Murray, M. B., Toner, E., & Lipsitch, M. (2020). The demand for inpatient and ICU beds for COVID-19 in the US: lessons from Chinese cities. doi:10.1101/2020.03.09.20033241

(2020). Contact Transmission of COVID-19 in South Korea: Novel Investigation Techniques for Tracing Contacts. Osong Public Health and Research Perspectives, 11(1), 60-63. doi:10.24171/j.phrp.2020.11.1.09

Eames, K. T. D., & Keeling, M. J. (2003). Contact tracing and disease control. Proceedings of the Royal Society of London. Series B: Biological Sciences, 270(1533), 2565-2571. doi:10.1098/rspb.2003.2554

Salathé, M. (2018). Digital epidemiology: what is it, and where is it going? Life Sciences, Society and Policy, 14(1). doi:10.1186/s40504-017-0065-7

The FluPhone Studyhttps://www.fluphone.org

Safe Pathshttp://safepaths.mit.edu

Pan-European Privacy-Preserving Proximity Tracing (PEPP-PT)https://www.pepp-pt.org

Pelusi, L., Passarella, A., & Conti, M. (2006). Opportunistic networking: data forwarding in disconnected mobile ad hoc networks. IEEE Communications Magazine, 44(11), 134-141. doi:10.1109/mcom.2006.248176

Zhang, X., Neglia, G., Kurose, J., & Towsley, D. (2007). Performance modeling of epidemic routing. Computer Networks, 51(10), 2867-2891. doi:10.1016/j.comnet.2006.11.028

Helgason, O., Kouyoumdjieva, S. T., & Karlsson, G. (2014). Opportunistic Communication and Human Mobility. IEEE Transactions on Mobile Computing, 13(7), 1597-1610. doi:10.1109/tmc.2013.160

Chancay-Garcia, L., Hernandez-Orallo, E., Manzoni, P., Calafate, C. T., & Cano, J.-C. (2018). Evaluating and Enhancing Information Dissemination in Urban Areas of Interest Using Opportunistic Networks. IEEE Access, 6, 32514-32531. doi:10.1109/access.2018.2846201

Dede, J., Forster, A., Hernandez-Orallo, E., Herrera-Tapia, J., Kuladinithi, K., Kuppusamy, V., … Vatandas, Z. (2018). Simulating Opportunistic Networks: Survey and Future Directions. IEEE Communications Surveys & Tutorials, 20(2), 1547-1573. doi:10.1109/comst.2017.2782182

Hernández-Orallo, E., Murillo-Arcila, M., Calafate, C. T., Cano, J. C., Conejero, J. A., & Manzoni, P. (2016). Analytical evaluation of the performance of contact-Based messaging applications. Computer Networks, 111, 45-54. doi:10.1016/j.comnet.2016.07.006

Hernandez-Orallo, E., Olmos, M. D. S., Cano, J.-C., Calafate, C. T., & Manzoni, P. (2015). CoCoWa: A Collaborative Contact-Based Watchdog for Detecting Selfish Nodes. IEEE Transactions on Mobile Computing, 14(6), 1162-1175. doi:10.1109/tmc.2014.2343627

Hernandez-Orallo, E., Manzoni, P., Calafate, C. T., & Cano, J.-C. (2020). Evaluating How Smartphone Contact Tracing Technology Can Reduce the Spread of Infectious Diseases: The Case of COVID-19. IEEE Access, 8, 99083-99097. doi:10.1109/access.2020.2998042

Christaki, E. (2015). New technologies in predicting, preventing and controlling emerging infectious diseases. Virulence, 6(6), 558-565. doi:10.1080/21505594.2015.1040975

Cecilia, J. M., Cano, J., Hernández‐Orallo, E., Calafate, C. T., & Manzoni, P. (2020). Mobile crowdsensing approaches to address the COVID‐19 pandemic in Spain. IET Smart Cities, 2(2), 58-63. doi:10.1049/iet-smc.2020.0037

Hernández-Orallo, E., Borrego, C., Manzoni, P., Marquez-Barja, J. M., Cano, J. C., & Calafate, C. T. (2020). Optimising data diffusion while reducing local resources consumption in Opportunistic Mobile Crowdsensing. Pervasive and Mobile Computing, 67, 101201. doi:10.1016/j.pmcj.2020.101201

Doran, D., Severin, K., Gokhale, S., & Dagnino, A. (2015). Social media enabled human sensing for smart cities. AI Communications, 29(1), 57-75. doi:10.3233/aic-150683

Salathe, M., Kazandjieva, M., Lee, J. W., Levis, P., Feldman, M. W., & Jones, J. H. (2010). A high-resolution human contact network for infectious disease transmission. Proceedings of the National Academy of Sciences, 107(51), 22020-22025. doi:10.1073/pnas.1009094108

Fraser, C., Riley, S., Anderson, R. M., & Ferguson, N. M. (2004). Factors that make an infectious disease outbreak controllable. Proceedings of the National Academy of Sciences, 101(16), 6146-6151. doi:10.1073/pnas.0307506101

Klinkenberg, D., Fraser, C., & Heesterbeek, H. (2006). The Effectiveness of Contact Tracing in Emerging Epidemics. PLoS ONE, 1(1), e12. doi:10.1371/journal.pone.0000012

Kwok, K. O., Tang, A., Wei, V. W. I., Park, W. H., Yeoh, E. K., & Riley, S. (2019). Epidemic Models of Contact Tracing: Systematic Review of Transmission Studies of Severe Acute Respiratory Syndrome and Middle East Respiratory Syndrome. Computational and Structural Biotechnology Journal, 17, 186-194. doi:10.1016/j.csbj.2019.01.003

Müller, J., Kretzschmar, M., & Dietz, K. (2000). Contact tracing in stochastic and deterministic epidemic models. Mathematical Biosciences, 164(1), 39-64. doi:10.1016/s0025-5564(99)00061-9

Huerta, R., & Tsimring, L. S. (2002). Contact tracing and epidemics control in social networks. Physical Review E, 66(5). doi:10.1103/physreve.66.056115

Lipsitch, M., Cohen, T., Cooper, B., Robins, J. M., Ma, S., James, L., … Murray, M. (2003). Transmission Dynamics and Control of Severe Acute Respiratory Syndrome. Science, 300(5627), 1966-1970. doi:10.1126/science.1086616

Hellewell, J., Abbott, S., Gimma, A., Bosse, N. I., Jarvis, C. I., Russell, T. W., … van Zandvoort, K. (2020). Feasibility of controlling COVID-19 outbreaks by isolation of cases and contacts. The Lancet Global Health, 8(4), e488-e496. doi:10.1016/s2214-109x(20)30074-7

Farrahi, K., Emonet, R., & Cebrian, M. (2014). Epidemic Contact Tracing via Communication Traces. PLoS ONE, 9(5), e95133. doi:10.1371/journal.pone.0095133

Yang, H.-X., Wang, W.-X., Lai, Y.-C., & Wang, B.-H. (2012). Traffic-driven epidemic spreading on networks of mobile agents. EPL (Europhysics Letters), 98(6), 68003. doi:10.1209/0295-5075/98/68003

Anglemyer, A., Moore, T. H., Parker, L., Chambers, T., Grady, A., Chiu, K., … Bero, L. (2020). Digital contact tracing technologies in epidemics: a rapid review. Cochrane Database of Systematic Reviews, 2020(8). doi:10.1002/14651858.cd013699

Braithwaite, I., Callender, T., Bullock, M., & Aldridge, R. W. (2020). Automated and partly automated contact tracing: a systematic review to inform the control of COVID-19. The Lancet Digital Health, 2(11), e607-e621. doi:10.1016/s2589-7500(20)30184-9

Ferretti, L., Wymant, C., Kendall, M., Zhao, L., Nurtay, A., Abeler-Dörner, L., … Fraser, C. (2020). Quantifying SARS-CoV-2 transmission suggests epidemic control with digital contact tracing. Science, 368(6491). doi:10.1126/science.abb6936

Cencetti, G., Santin, G., Longa, A., Pigani, E., Barrat, A., Cattuto, C., … Lepri, B. (2020). Digital proximity tracing on empirical contact networks for pandemic control. doi:10.1101/2020.05.29.20115915

Kretzschmar, M. E., Rozhnova, G., Bootsma, M., van Boven, M., van de Wijgert, J., & Bonten, M. (2020). Time is of the essence: impact of delays on effectiveness of contact tracing for COVID-19, a modelling study. doi:10.1101/2020.05.09.20096289

Lambert, A. (2020). A mathematically rigorous assessment of the efficiency of quarantining and contact tracing in curbing the COVID-19 epidemic. doi:10.1101/2020.05.04.20091009

Sattler, F., Ma, J., Wagner, P., Neumann, D., Wenzel, M., Schäfer, R., … Wiegand, T. (2020). Risk estimation of SARS-CoV-2 transmission from bluetooth low energy measurements. npj Digital Medicine, 3(1). doi:10.1038/s41746-020-00340-0

Coronavirus: How to Do Testing and Contact Tracinghttps://medium.com/@tomaspueyo

Li, R., Pei, S., Chen, B., Song, Y., Zhang, T., Yang, W., & Shaman, J. (2020). Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (SARS-CoV-2). Science, 368(6490), 489-493. doi:10.1126/science.abb3221

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem