- -

A multimicrogrid energy management model implementing an evolutionary game-theoretic approach

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A multimicrogrid energy management model implementing an evolutionary game-theoretic approach

Mostrar el registro completo del ítem

Aguila-Leon, J.; Chiñas-Palacios, C.; García, EXM.; Vargas-Salgado, C. (2020). A multimicrogrid energy management model implementing an evolutionary game-theoretic approach. International Transactions on Electrical Energy System. 30(11):1-19. https://doi.org/10.1002/2050-7038.12617

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/163761

Ficheros en el ítem

Metadatos del ítem

Título: A multimicrogrid energy management model implementing an evolutionary game-theoretic approach
Autor: Aguila-Leon, Jesus Chiñas-Palacios, Cristian García, Edith X. M. Vargas-Salgado, Carlos
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Eléctrica - Departament d'Enginyeria Elèctrica
Fecha difusión:
Resumen:
[EN] Microgrids (MGs) are widely increasing to manage unequal electrical load requirements based on the infrastructure. The goal of this article is to manage energy in a centralized controller multimicrogrid (MMG) system ...[+]
Palabras clave: Distributed generation , Energy management , Evolutionary game theory , Microgrid , Multimicrogrid , Optimization
Derechos de uso: Cerrado
Fuente:
International Transactions on Electrical Energy System. (eissn: 2050-7038 )
DOI: 10.1002/2050-7038.12617
Editorial:
Wiley
Versión del editor: https://doi.org/10.1002/2050-7038.12617
Código del Proyecto:
info:eu-repo/grantAgreement/CONACyT//486670/
Agradecimientos:
Consejo Nacional de Ciencia y Tecnologia, Grant/Award Number: 486670
Tipo: Artículo

References

Pinzon, J. A., Vergara, P. P., da Silva, L. C. P., & Rider, M. J. (2019). Optimal Management of Energy Consumption and Comfort for Smart Buildings Operating in a Microgrid. IEEE Transactions on Smart Grid, 10(3), 3236-3247. doi:10.1109/tsg.2018.2822276

Zhao, B., Wang, X., Lin, D., Calvin, M. M., Morgan, J. C., Qin, R., & Wang, C. (2018). Energy Management of Multiple Microgrids Based on a System of Systems Architecture. IEEE Transactions on Power Systems, 33(6), 6410-6421. doi:10.1109/tpwrs.2018.2840055

Maulik, A., & Das, D. (2018). Determination of Optimal Reserve Requirement for Fuel Cost Minimization of a Microgrid Under Load and Generation Uncertainties. Arabian Journal for Science and Engineering, 44(3), 2003-2031. doi:10.1007/s13369-018-3234-y [+]
Pinzon, J. A., Vergara, P. P., da Silva, L. C. P., & Rider, M. J. (2019). Optimal Management of Energy Consumption and Comfort for Smart Buildings Operating in a Microgrid. IEEE Transactions on Smart Grid, 10(3), 3236-3247. doi:10.1109/tsg.2018.2822276

Zhao, B., Wang, X., Lin, D., Calvin, M. M., Morgan, J. C., Qin, R., & Wang, C. (2018). Energy Management of Multiple Microgrids Based on a System of Systems Architecture. IEEE Transactions on Power Systems, 33(6), 6410-6421. doi:10.1109/tpwrs.2018.2840055

Maulik, A., & Das, D. (2018). Determination of Optimal Reserve Requirement for Fuel Cost Minimization of a Microgrid Under Load and Generation Uncertainties. Arabian Journal for Science and Engineering, 44(3), 2003-2031. doi:10.1007/s13369-018-3234-y

Hossain, S. J., Paul, T. G., Bisht, R., Suresh, A., & Kamalasadan, S. (2018). An Integrated Battery Optimal Power Dispatch Architecture for End-User-Driven Microgrid in Islanded and Grid-Connected Mode of Operation. IEEE Transactions on Industry Applications, 54(4), 3806-3819. doi:10.1109/tia.2018.2821643

Bhowmik, P., Chandak, S., & Rout, P. K. (2019). State of charge and state of power management of the hybrid energy storage system in an architecture of microgrid. Journal of Renewable and Sustainable Energy, 11(1), 014103. doi:10.1063/1.5053567

Bhowmik, P., Chandak, S., & Rout, P. K. (2019). State of charge and state of power management in a hybrid energy storage system by the self‐tuned dynamic exponent and the fuzzy‐based dynamic PI controller. International Transactions on Electrical Energy Systems, 29(5), e2848. doi:10.1002/2050-7038.2848

Arcos-Aviles, D., Pascual, J., Marroyo, L., Sanchis, P., & Guinjoan, F. (2018). Fuzzy Logic-Based Energy Management System Design for Residential Grid-Connected Microgrids. IEEE Transactions on Smart Grid, 9(2), 530-543. doi:10.1109/tsg.2016.2555245

Bhowmik, P., Chandak, S., & Rout, P. K. (2018). State of charge and state of power management among the energy storage systems by the fuzzy tuned dynamic exponent and the dynamic PI controller. Journal of Energy Storage, 19, 348-363. doi:10.1016/j.est.2018.08.004

Bhowmik, P., Chandak, S., & Rout, P. K. (2019). Frequency superimposed energy bifurcation technology for a hybrid microgrid. Sustainable Cities and Society, 45, 607-618. doi:10.1016/j.scs.2018.12.027

Pouryekta, A., Ramachandaramurthy, V. K., Mithulananthan, N., & Arulampalam, A. (2018). Islanding Detection and Enhancement of Microgrid Performance. IEEE Systems Journal, 12(4), 3131-3141. doi:10.1109/jsyst.2017.2705738

Talapur, G. G., Suryawanshi, H. M., Xu, L., & Shitole, A. B. (2018). A Reliable Microgrid With Seamless Transition Between Grid Connected and Islanded Mode for Residential Community With Enhanced Power Quality. IEEE Transactions on Industry Applications, 54(5), 5246-5255. doi:10.1109/tia.2018.2808482

Guo, Y., & Zhao, C. (2018). Islanding-Aware Robust Energy Management for Microgrids. IEEE Transactions on Smart Grid, 9(2), 1301-1309. doi:10.1109/tsg.2016.2585092

Mahmood, H., & Jiang, J. (2019). Decentralized Power Management of Multiple PV, Battery, and Droop Units in an Islanded Microgrid. IEEE Transactions on Smart Grid, 10(2), 1898-1906. doi:10.1109/tsg.2017.2781468

Zhou, J., Zhang, J., Cai, X., Shi, G., Wang, J., & Zang, J. (2019). Design and Analysis of Flexible Multi-Microgrid Interconnection Scheme for Mitigating Power Fluctuation and Optimizing Storage Capacity. Energies, 12(11), 2132. doi:10.3390/en12112132

Nguyen, A.-D., Bui, V.-H., Hussain, A., Nguyen, D.-H., & Kim, H.-M. (2018). Impact of Demand Response Programs on Optimal Operation of Multi-Microgrid System. Energies, 11(6), 1452. doi:10.3390/en11061452

Rui, T., Li, G., Wang, Q., Hu, C., Shen, W., & Xu, B. (2019). Hierarchical Optimization Method for Energy Scheduling of Multiple Microgrids. Applied Sciences, 9(4), 624. doi:10.3390/app9040624

Choobineh, M., Silva-Ortiz, D., & Mohagheghi, S. (2018). An Automation Scheme for Emergency Operation of a Multi-Microgrid Industrial Park. IEEE Transactions on Industry Applications, 54(6), 6450-6459. doi:10.1109/tia.2018.2851210

Zeng, J., Peng, J., Zhang, C., Zhang, W., & Zhou, S. (2019). Research on islanding partition algorithm for the multi‐microgrids. The Journal of Engineering, 2019(16), 3345-3348. doi:10.1049/joe.2018.8395

Farzin, H., Fotuhi-Firuzabad, M., & Moeini-Aghtaie, M. (2018). Role of Outage Management Strategy in Reliability Performance of Multi-Microgrid Distribution Systems. IEEE Transactions on Power Systems, 33(3), 2359-2369. doi:10.1109/tpwrs.2017.2746180

Dey, B., Bhattacharyya, B., & Sharma, S. (2018). Optimal Sizing of Distributed Energy Resources in a Microgrid System with Highly Penetrated Renewables. Iranian Journal of Science and Technology, Transactions of Electrical Engineering, 43(S1), 527-540. doi:10.1007/s40998-018-0141-x

Hu, B., Wang, H., & Yao, S. (2017). Optimal economic operation of isolated community microgrid incorporating temperature controlling devices. Protection and Control of Modern Power Systems, 2(1). doi:10.1186/s41601-017-0037-1

Rezaei, N., Ahmadi, A., Khazali, A. H., & Guerrero, J. M. (2018). Energy and Frequency Hierarchical Management System Using Information Gap Decision Theory for Islanded Microgrids. IEEE Transactions on Industrial Electronics, 65(10), 7921-7932. doi:10.1109/tie.2018.2798616

Liu, W., Gu, W., Wang, J., Yu, W., & Xi, X. (2018). Game Theoretic Non-Cooperative Distributed Coordination Control for Multi-Microgrids. IEEE Transactions on Smart Grid, 9(6), 6986-6997. doi:10.1109/tsg.2018.2846732

Zeng, J., Wang, Q., Liu, J., Chen, J., & Chen, H. (2019). A Potential Game Approach to Distributed Operational Optimization for Microgrid Energy Management With Renewable Energy and Demand Response. IEEE Transactions on Industrial Electronics, 66(6), 4479-4489. doi:10.1109/tie.2018.2864714

Ju, C., Wang, P., Goel, L., & Xu, Y. (2018). A Two-Layer Energy Management System for Microgrids With Hybrid Energy Storage Considering Degradation Costs. IEEE Transactions on Smart Grid, 9(6), 6047-6057. doi:10.1109/tsg.2017.2703126

Azeem, F., Narejo, G. B., & Shah, U. A. (2018). Integration of renewable distributed generation with storage and demand side load management in rural islanded microgrid. Energy Efficiency, 13(2), 217-235. doi:10.1007/s12053-018-9747-0

Al Badwawi, R., Issa, W. R., Mallick, T. K., & Abusara, M. (2019). Supervisory Control for Power Management of an Islanded AC Microgrid Using a Frequency Signalling-Based Fuzzy Logic Controller. IEEE Transactions on Sustainable Energy, 10(1), 94-104. doi:10.1109/tste.2018.2825655

Hosseinnia, H., Nazarpour, D., & Talavat, V. (2018). Multi-objective optimization framework for optimal planning of the microgrid (MG) under employing demand response program (DRP). Journal of Ambient Intelligence and Humanized Computing, 10(7), 2709-2730. doi:10.1007/s12652-018-0977-y

Choudhury, S., Bhowmik, P., & Rout, P. K. (2018). Robust dynamic fuzzy-based enhanced VPD/FQB controller for load sharing in microgrid with distributed generators. Electrical Engineering, 100(4), 2457-2472. doi:10.1007/s00202-018-0724-6

Choudhury, S., Bhowmik, P., & Rout, P. K. (2018). Seeker optimization approach to dynamic PI based virtual impedance drooping for economic load sharing between PV and SOFC in an islanded microgrid. Sustainable Cities and Society, 37, 550-562. doi:10.1016/j.scs.2017.11.013

Choudhury, S., Bhowmik, P., & Rout, P. K. (2018). Economic load sharing in a D-STATCOM Integrated Islanded Microgrid based on Fuzzy Logic and Seeker Optimization Approach. Sustainable Cities and Society, 37, 57-69. doi:10.1016/j.scs.2017.11.004

Chaitanya, B. K., Yadav, A., & Pazoki, M. (2018). Wide area monitoring and protection of microgrid with DGs using modular artificial neural networks. Neural Computing and Applications, 32(7), 2125-2139. doi:10.1007/s00521-018-3750-4

Wu, P., Huang, W., Tai, N., Ma, Z., Zheng, X., & Zhang, Y. (2019). A Multi-layer Coordinated Control Scheme to Improve the Operation Friendliness of Grid-Connected Multiple Microgrids. Energies, 12(2), 255. doi:10.3390/en12020255

Uy, L., Uy, P., Siy, J., Chiu, A. S. F., & Sy, C. (2018). Target-oriented robust optimization of a microgrid system investment model. Frontiers in Energy, 12(3), 440-455. doi:10.1007/s11708-018-0563-1

Hu, K., Li, W., Wang, L., Cao, S., Zhu, F., & Shou, Z. (2018). Energy management for multi-microgrid system based on model predictive control. Frontiers of Information Technology & Electronic Engineering, 19(11), 1340-1351. doi:10.1631/fitee.1601826

Rahbar, K., Chai, C. C., & Zhang, R. (2018). Energy Cooperation Optimization in Microgrids With Renewable Energy Integration. IEEE Transactions on Smart Grid, 9(2), 1482-1493. doi:10.1109/tsg.2016.2600863

Kumar, R. H., & Ushakumari, S. (2018). A Novel Control Strategy for Autonomous Operation of Isolated Microgrid with Prioritized Loads. Journal of The Institution of Engineers (India): Series B, 99(4), 323-330. doi:10.1007/s40031-018-0335-7

Kaushal, J., & Basak, P. (2018). A Novel Approach for Determination of Power Quality Monitoring Index of an AC Microgrid Using Fuzzy Inference System. Iranian Journal of Science and Technology, Transactions of Electrical Engineering, 42(4), 429-450. doi:10.1007/s40998-018-0087-z

Sun, W., Ma, S., Alvarez‐Fernandez, I., Roofegari nejad, R., & Golshani, A. (2018). Optimal self‐healing strategy for microgrid islanding. IET Smart Grid, 1(4), 143-150. doi:10.1049/iet-stg.2018.0057

Sandgani, M. R., & Sirouspour, S. (2018). Priority-Based Microgrid Energy Management in a Network Environment. IEEE Transactions on Sustainable Energy, 9(2), 980-990. doi:10.1109/tste.2017.2769558

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem