Mostrar el registro sencillo del ítem
dc.contributor.author | Aguila-Leon, Jesus | es_ES |
dc.contributor.author | Chiñas-Palacios, Cristian | es_ES |
dc.contributor.author | García, Edith X. M. | es_ES |
dc.contributor.author | Vargas-Salgado, Carlos | es_ES |
dc.date.accessioned | 2021-03-12T04:31:28Z | |
dc.date.available | 2021-03-12T04:31:28Z | |
dc.date.issued | 2020-11 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/163761 | |
dc.description.abstract | [EN] Microgrids (MGs) are widely increasing to manage unequal electrical load requirements based on the infrastructure. The goal of this article is to manage energy in a centralized controller multimicrogrid (MMG) system operated at islanded mode. Renewable energy fluctuations in MG due to weather conditions build oscillation in MG operation modes. To solve this, a three-stage energy management MMG system is proposed. The proposed system is composed of operating mode prediction by measuring the weather conditions. In islanded mode, energy management is incorporated using a two-round fuzzy-based speed (TRFS) algorithm followed by evolutionary game theory and status updating by Markov chain. The TRFS algorithm takes into account voltage, frequency, power factor, total harmonic distortion, and loss of produced power probability parameters. The parallel processing of the TRFS algorithm reduces processing time, then a Stackelberg game with a quasi-oppositional symbiotic organisms search approach is carried out for power exchange. Markov chain based future prediction of MG states ensures detection of MG operating mode along with weather changes. Simulations are developed in MATLAB Simulink, and their outcomes show better performance than previous work whose results are evaluated in terms of load and generator output at two modes, power generated at individual MG and exchanged power. | es_ES |
dc.description.sponsorship | Consejo Nacional de Ciencia y Tecnologia, Grant/Award Number: 486670 | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Wiley | es_ES |
dc.relation.ispartof | International Transactions on Electrical Energy System | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Distributed generation | es_ES |
dc.subject | Energy management | es_ES |
dc.subject | Evolutionary game theory | es_ES |
dc.subject | Microgrid | es_ES |
dc.subject | Multimicrogrid | es_ES |
dc.subject | Optimization | es_ES |
dc.subject.classification | INGENIERIA ELECTRICA | es_ES |
dc.title | A multimicrogrid energy management model implementing an evolutionary game-theoretic approach | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1002/2050-7038.12617 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/CONACyT//486670/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Eléctrica - Departament d'Enginyeria Elèctrica | es_ES |
dc.description.bibliographicCitation | Aguila-Leon, J.; Chiñas-Palacios, C.; García, EXM.; Vargas-Salgado, C. (2020). A multimicrogrid energy management model implementing an evolutionary game-theoretic approach. International Transactions on Electrical Energy System. 30(11):1-19. https://doi.org/10.1002/2050-7038.12617 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1002/2050-7038.12617 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 19 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 30 | es_ES |
dc.description.issue | 11 | es_ES |
dc.identifier.eissn | 2050-7038 | es_ES |
dc.relation.pasarela | S\417837 | es_ES |
dc.contributor.funder | Consejo Nacional de Ciencia y Tecnología, México | es_ES |
dc.description.references | Pinzon, J. A., Vergara, P. P., da Silva, L. C. P., & Rider, M. J. (2019). Optimal Management of Energy Consumption and Comfort for Smart Buildings Operating in a Microgrid. IEEE Transactions on Smart Grid, 10(3), 3236-3247. doi:10.1109/tsg.2018.2822276 | es_ES |
dc.description.references | Zhao, B., Wang, X., Lin, D., Calvin, M. M., Morgan, J. C., Qin, R., & Wang, C. (2018). Energy Management of Multiple Microgrids Based on a System of Systems Architecture. IEEE Transactions on Power Systems, 33(6), 6410-6421. doi:10.1109/tpwrs.2018.2840055 | es_ES |
dc.description.references | Maulik, A., & Das, D. (2018). Determination of Optimal Reserve Requirement for Fuel Cost Minimization of a Microgrid Under Load and Generation Uncertainties. Arabian Journal for Science and Engineering, 44(3), 2003-2031. doi:10.1007/s13369-018-3234-y | es_ES |
dc.description.references | Hossain, S. J., Paul, T. G., Bisht, R., Suresh, A., & Kamalasadan, S. (2018). An Integrated Battery Optimal Power Dispatch Architecture for End-User-Driven Microgrid in Islanded and Grid-Connected Mode of Operation. IEEE Transactions on Industry Applications, 54(4), 3806-3819. doi:10.1109/tia.2018.2821643 | es_ES |
dc.description.references | Bhowmik, P., Chandak, S., & Rout, P. K. (2019). State of charge and state of power management of the hybrid energy storage system in an architecture of microgrid. Journal of Renewable and Sustainable Energy, 11(1), 014103. doi:10.1063/1.5053567 | es_ES |
dc.description.references | Bhowmik, P., Chandak, S., & Rout, P. K. (2019). State of charge and state of power management in a hybrid energy storage system by the self‐tuned dynamic exponent and the fuzzy‐based dynamic PI controller. International Transactions on Electrical Energy Systems, 29(5), e2848. doi:10.1002/2050-7038.2848 | es_ES |
dc.description.references | Arcos-Aviles, D., Pascual, J., Marroyo, L., Sanchis, P., & Guinjoan, F. (2018). Fuzzy Logic-Based Energy Management System Design for Residential Grid-Connected Microgrids. IEEE Transactions on Smart Grid, 9(2), 530-543. doi:10.1109/tsg.2016.2555245 | es_ES |
dc.description.references | Bhowmik, P., Chandak, S., & Rout, P. K. (2018). State of charge and state of power management among the energy storage systems by the fuzzy tuned dynamic exponent and the dynamic PI controller. Journal of Energy Storage, 19, 348-363. doi:10.1016/j.est.2018.08.004 | es_ES |
dc.description.references | Bhowmik, P., Chandak, S., & Rout, P. K. (2019). Frequency superimposed energy bifurcation technology for a hybrid microgrid. Sustainable Cities and Society, 45, 607-618. doi:10.1016/j.scs.2018.12.027 | es_ES |
dc.description.references | Pouryekta, A., Ramachandaramurthy, V. K., Mithulananthan, N., & Arulampalam, A. (2018). Islanding Detection and Enhancement of Microgrid Performance. IEEE Systems Journal, 12(4), 3131-3141. doi:10.1109/jsyst.2017.2705738 | es_ES |
dc.description.references | Talapur, G. G., Suryawanshi, H. M., Xu, L., & Shitole, A. B. (2018). A Reliable Microgrid With Seamless Transition Between Grid Connected and Islanded Mode for Residential Community With Enhanced Power Quality. IEEE Transactions on Industry Applications, 54(5), 5246-5255. doi:10.1109/tia.2018.2808482 | es_ES |
dc.description.references | Guo, Y., & Zhao, C. (2018). Islanding-Aware Robust Energy Management for Microgrids. IEEE Transactions on Smart Grid, 9(2), 1301-1309. doi:10.1109/tsg.2016.2585092 | es_ES |
dc.description.references | Mahmood, H., & Jiang, J. (2019). Decentralized Power Management of Multiple PV, Battery, and Droop Units in an Islanded Microgrid. IEEE Transactions on Smart Grid, 10(2), 1898-1906. doi:10.1109/tsg.2017.2781468 | es_ES |
dc.description.references | Zhou, J., Zhang, J., Cai, X., Shi, G., Wang, J., & Zang, J. (2019). Design and Analysis of Flexible Multi-Microgrid Interconnection Scheme for Mitigating Power Fluctuation and Optimizing Storage Capacity. Energies, 12(11), 2132. doi:10.3390/en12112132 | es_ES |
dc.description.references | Nguyen, A.-D., Bui, V.-H., Hussain, A., Nguyen, D.-H., & Kim, H.-M. (2018). Impact of Demand Response Programs on Optimal Operation of Multi-Microgrid System. Energies, 11(6), 1452. doi:10.3390/en11061452 | es_ES |
dc.description.references | Rui, T., Li, G., Wang, Q., Hu, C., Shen, W., & Xu, B. (2019). Hierarchical Optimization Method for Energy Scheduling of Multiple Microgrids. Applied Sciences, 9(4), 624. doi:10.3390/app9040624 | es_ES |
dc.description.references | Choobineh, M., Silva-Ortiz, D., & Mohagheghi, S. (2018). An Automation Scheme for Emergency Operation of a Multi-Microgrid Industrial Park. IEEE Transactions on Industry Applications, 54(6), 6450-6459. doi:10.1109/tia.2018.2851210 | es_ES |
dc.description.references | Zeng, J., Peng, J., Zhang, C., Zhang, W., & Zhou, S. (2019). Research on islanding partition algorithm for the multi‐microgrids. The Journal of Engineering, 2019(16), 3345-3348. doi:10.1049/joe.2018.8395 | es_ES |
dc.description.references | Farzin, H., Fotuhi-Firuzabad, M., & Moeini-Aghtaie, M. (2018). Role of Outage Management Strategy in Reliability Performance of Multi-Microgrid Distribution Systems. IEEE Transactions on Power Systems, 33(3), 2359-2369. doi:10.1109/tpwrs.2017.2746180 | es_ES |
dc.description.references | Dey, B., Bhattacharyya, B., & Sharma, S. (2018). Optimal Sizing of Distributed Energy Resources in a Microgrid System with Highly Penetrated Renewables. Iranian Journal of Science and Technology, Transactions of Electrical Engineering, 43(S1), 527-540. doi:10.1007/s40998-018-0141-x | es_ES |
dc.description.references | Hu, B., Wang, H., & Yao, S. (2017). Optimal economic operation of isolated community microgrid incorporating temperature controlling devices. Protection and Control of Modern Power Systems, 2(1). doi:10.1186/s41601-017-0037-1 | es_ES |
dc.description.references | Rezaei, N., Ahmadi, A., Khazali, A. H., & Guerrero, J. M. (2018). Energy and Frequency Hierarchical Management System Using Information Gap Decision Theory for Islanded Microgrids. IEEE Transactions on Industrial Electronics, 65(10), 7921-7932. doi:10.1109/tie.2018.2798616 | es_ES |
dc.description.references | Liu, W., Gu, W., Wang, J., Yu, W., & Xi, X. (2018). Game Theoretic Non-Cooperative Distributed Coordination Control for Multi-Microgrids. IEEE Transactions on Smart Grid, 9(6), 6986-6997. doi:10.1109/tsg.2018.2846732 | es_ES |
dc.description.references | Zeng, J., Wang, Q., Liu, J., Chen, J., & Chen, H. (2019). A Potential Game Approach to Distributed Operational Optimization for Microgrid Energy Management With Renewable Energy and Demand Response. IEEE Transactions on Industrial Electronics, 66(6), 4479-4489. doi:10.1109/tie.2018.2864714 | es_ES |
dc.description.references | Ju, C., Wang, P., Goel, L., & Xu, Y. (2018). A Two-Layer Energy Management System for Microgrids With Hybrid Energy Storage Considering Degradation Costs. IEEE Transactions on Smart Grid, 9(6), 6047-6057. doi:10.1109/tsg.2017.2703126 | es_ES |
dc.description.references | Azeem, F., Narejo, G. B., & Shah, U. A. (2018). Integration of renewable distributed generation with storage and demand side load management in rural islanded microgrid. Energy Efficiency, 13(2), 217-235. doi:10.1007/s12053-018-9747-0 | es_ES |
dc.description.references | Al Badwawi, R., Issa, W. R., Mallick, T. K., & Abusara, M. (2019). Supervisory Control for Power Management of an Islanded AC Microgrid Using a Frequency Signalling-Based Fuzzy Logic Controller. IEEE Transactions on Sustainable Energy, 10(1), 94-104. doi:10.1109/tste.2018.2825655 | es_ES |
dc.description.references | Hosseinnia, H., Nazarpour, D., & Talavat, V. (2018). Multi-objective optimization framework for optimal planning of the microgrid (MG) under employing demand response program (DRP). Journal of Ambient Intelligence and Humanized Computing, 10(7), 2709-2730. doi:10.1007/s12652-018-0977-y | es_ES |
dc.description.references | Choudhury, S., Bhowmik, P., & Rout, P. K. (2018). Robust dynamic fuzzy-based enhanced VPD/FQB controller for load sharing in microgrid with distributed generators. Electrical Engineering, 100(4), 2457-2472. doi:10.1007/s00202-018-0724-6 | es_ES |
dc.description.references | Choudhury, S., Bhowmik, P., & Rout, P. K. (2018). Seeker optimization approach to dynamic PI based virtual impedance drooping for economic load sharing between PV and SOFC in an islanded microgrid. Sustainable Cities and Society, 37, 550-562. doi:10.1016/j.scs.2017.11.013 | es_ES |
dc.description.references | Choudhury, S., Bhowmik, P., & Rout, P. K. (2018). Economic load sharing in a D-STATCOM Integrated Islanded Microgrid based on Fuzzy Logic and Seeker Optimization Approach. Sustainable Cities and Society, 37, 57-69. doi:10.1016/j.scs.2017.11.004 | es_ES |
dc.description.references | Chaitanya, B. K., Yadav, A., & Pazoki, M. (2018). Wide area monitoring and protection of microgrid with DGs using modular artificial neural networks. Neural Computing and Applications, 32(7), 2125-2139. doi:10.1007/s00521-018-3750-4 | es_ES |
dc.description.references | Wu, P., Huang, W., Tai, N., Ma, Z., Zheng, X., & Zhang, Y. (2019). A Multi-layer Coordinated Control Scheme to Improve the Operation Friendliness of Grid-Connected Multiple Microgrids. Energies, 12(2), 255. doi:10.3390/en12020255 | es_ES |
dc.description.references | Uy, L., Uy, P., Siy, J., Chiu, A. S. F., & Sy, C. (2018). Target-oriented robust optimization of a microgrid system investment model. Frontiers in Energy, 12(3), 440-455. doi:10.1007/s11708-018-0563-1 | es_ES |
dc.description.references | Hu, K., Li, W., Wang, L., Cao, S., Zhu, F., & Shou, Z. (2018). Energy management for multi-microgrid system based on model predictive control. Frontiers of Information Technology & Electronic Engineering, 19(11), 1340-1351. doi:10.1631/fitee.1601826 | es_ES |
dc.description.references | Rahbar, K., Chai, C. C., & Zhang, R. (2018). Energy Cooperation Optimization in Microgrids With Renewable Energy Integration. IEEE Transactions on Smart Grid, 9(2), 1482-1493. doi:10.1109/tsg.2016.2600863 | es_ES |
dc.description.references | Kumar, R. H., & Ushakumari, S. (2018). A Novel Control Strategy for Autonomous Operation of Isolated Microgrid with Prioritized Loads. Journal of The Institution of Engineers (India): Series B, 99(4), 323-330. doi:10.1007/s40031-018-0335-7 | es_ES |
dc.description.references | Kaushal, J., & Basak, P. (2018). A Novel Approach for Determination of Power Quality Monitoring Index of an AC Microgrid Using Fuzzy Inference System. Iranian Journal of Science and Technology, Transactions of Electrical Engineering, 42(4), 429-450. doi:10.1007/s40998-018-0087-z | es_ES |
dc.description.references | Sun, W., Ma, S., Alvarez‐Fernandez, I., Roofegari nejad, R., & Golshani, A. (2018). Optimal self‐healing strategy for microgrid islanding. IET Smart Grid, 1(4), 143-150. doi:10.1049/iet-stg.2018.0057 | es_ES |
dc.description.references | Sandgani, M. R., & Sirouspour, S. (2018). Priority-Based Microgrid Energy Management in a Network Environment. IEEE Transactions on Sustainable Energy, 9(2), 980-990. doi:10.1109/tste.2017.2769558 | es_ES |