- -

A multimicrogrid energy management model implementing an evolutionary game-theoretic approach

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A multimicrogrid energy management model implementing an evolutionary game-theoretic approach

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Aguila-Leon, Jesus es_ES
dc.contributor.author Chiñas-Palacios, Cristian es_ES
dc.contributor.author García, Edith X. M. es_ES
dc.contributor.author Vargas-Salgado, Carlos es_ES
dc.date.accessioned 2021-03-12T04:31:28Z
dc.date.available 2021-03-12T04:31:28Z
dc.date.issued 2020-11 es_ES
dc.identifier.uri http://hdl.handle.net/10251/163761
dc.description.abstract [EN] Microgrids (MGs) are widely increasing to manage unequal electrical load requirements based on the infrastructure. The goal of this article is to manage energy in a centralized controller multimicrogrid (MMG) system operated at islanded mode. Renewable energy fluctuations in MG due to weather conditions build oscillation in MG operation modes. To solve this, a three-stage energy management MMG system is proposed. The proposed system is composed of operating mode prediction by measuring the weather conditions. In islanded mode, energy management is incorporated using a two-round fuzzy-based speed (TRFS) algorithm followed by evolutionary game theory and status updating by Markov chain. The TRFS algorithm takes into account voltage, frequency, power factor, total harmonic distortion, and loss of produced power probability parameters. The parallel processing of the TRFS algorithm reduces processing time, then a Stackelberg game with a quasi-oppositional symbiotic organisms search approach is carried out for power exchange. Markov chain based future prediction of MG states ensures detection of MG operating mode along with weather changes. Simulations are developed in MATLAB Simulink, and their outcomes show better performance than previous work whose results are evaluated in terms of load and generator output at two modes, power generated at individual MG and exchanged power. es_ES
dc.description.sponsorship Consejo Nacional de Ciencia y Tecnologia, Grant/Award Number: 486670 es_ES
dc.language Inglés es_ES
dc.publisher Wiley es_ES
dc.relation.ispartof International Transactions on Electrical Energy System es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Distributed generation es_ES
dc.subject Energy management es_ES
dc.subject Evolutionary game theory es_ES
dc.subject Microgrid es_ES
dc.subject Multimicrogrid es_ES
dc.subject Optimization es_ES
dc.subject.classification INGENIERIA ELECTRICA es_ES
dc.title A multimicrogrid energy management model implementing an evolutionary game-theoretic approach es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/2050-7038.12617 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CONACyT//486670/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Eléctrica - Departament d'Enginyeria Elèctrica es_ES
dc.description.bibliographicCitation Aguila-Leon, J.; Chiñas-Palacios, C.; García, EXM.; Vargas-Salgado, C. (2020). A multimicrogrid energy management model implementing an evolutionary game-theoretic approach. International Transactions on Electrical Energy System. 30(11):1-19. https://doi.org/10.1002/2050-7038.12617 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/2050-7038.12617 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 19 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 30 es_ES
dc.description.issue 11 es_ES
dc.identifier.eissn 2050-7038 es_ES
dc.relation.pasarela S\417837 es_ES
dc.contributor.funder Consejo Nacional de Ciencia y Tecnología, México es_ES
dc.description.references Pinzon, J. A., Vergara, P. P., da Silva, L. C. P., & Rider, M. J. (2019). Optimal Management of Energy Consumption and Comfort for Smart Buildings Operating in a Microgrid. IEEE Transactions on Smart Grid, 10(3), 3236-3247. doi:10.1109/tsg.2018.2822276 es_ES
dc.description.references Zhao, B., Wang, X., Lin, D., Calvin, M. M., Morgan, J. C., Qin, R., & Wang, C. (2018). Energy Management of Multiple Microgrids Based on a System of Systems Architecture. IEEE Transactions on Power Systems, 33(6), 6410-6421. doi:10.1109/tpwrs.2018.2840055 es_ES
dc.description.references Maulik, A., & Das, D. (2018). Determination of Optimal Reserve Requirement for Fuel Cost Minimization of a Microgrid Under Load and Generation Uncertainties. Arabian Journal for Science and Engineering, 44(3), 2003-2031. doi:10.1007/s13369-018-3234-y es_ES
dc.description.references Hossain, S. J., Paul, T. G., Bisht, R., Suresh, A., & Kamalasadan, S. (2018). An Integrated Battery Optimal Power Dispatch Architecture for End-User-Driven Microgrid in Islanded and Grid-Connected Mode of Operation. IEEE Transactions on Industry Applications, 54(4), 3806-3819. doi:10.1109/tia.2018.2821643 es_ES
dc.description.references Bhowmik, P., Chandak, S., & Rout, P. K. (2019). State of charge and state of power management of the hybrid energy storage system in an architecture of microgrid. Journal of Renewable and Sustainable Energy, 11(1), 014103. doi:10.1063/1.5053567 es_ES
dc.description.references Bhowmik, P., Chandak, S., & Rout, P. K. (2019). State of charge and state of power management in a hybrid energy storage system by the self‐tuned dynamic exponent and the fuzzy‐based dynamic PI controller. International Transactions on Electrical Energy Systems, 29(5), e2848. doi:10.1002/2050-7038.2848 es_ES
dc.description.references Arcos-Aviles, D., Pascual, J., Marroyo, L., Sanchis, P., & Guinjoan, F. (2018). Fuzzy Logic-Based Energy Management System Design for Residential Grid-Connected Microgrids. IEEE Transactions on Smart Grid, 9(2), 530-543. doi:10.1109/tsg.2016.2555245 es_ES
dc.description.references Bhowmik, P., Chandak, S., & Rout, P. K. (2018). State of charge and state of power management among the energy storage systems by the fuzzy tuned dynamic exponent and the dynamic PI controller. Journal of Energy Storage, 19, 348-363. doi:10.1016/j.est.2018.08.004 es_ES
dc.description.references Bhowmik, P., Chandak, S., & Rout, P. K. (2019). Frequency superimposed energy bifurcation technology for a hybrid microgrid. Sustainable Cities and Society, 45, 607-618. doi:10.1016/j.scs.2018.12.027 es_ES
dc.description.references Pouryekta, A., Ramachandaramurthy, V. K., Mithulananthan, N., & Arulampalam, A. (2018). Islanding Detection and Enhancement of Microgrid Performance. IEEE Systems Journal, 12(4), 3131-3141. doi:10.1109/jsyst.2017.2705738 es_ES
dc.description.references Talapur, G. G., Suryawanshi, H. M., Xu, L., & Shitole, A. B. (2018). A Reliable Microgrid With Seamless Transition Between Grid Connected and Islanded Mode for Residential Community With Enhanced Power Quality. IEEE Transactions on Industry Applications, 54(5), 5246-5255. doi:10.1109/tia.2018.2808482 es_ES
dc.description.references Guo, Y., & Zhao, C. (2018). Islanding-Aware Robust Energy Management for Microgrids. IEEE Transactions on Smart Grid, 9(2), 1301-1309. doi:10.1109/tsg.2016.2585092 es_ES
dc.description.references Mahmood, H., & Jiang, J. (2019). Decentralized Power Management of Multiple PV, Battery, and Droop Units in an Islanded Microgrid. IEEE Transactions on Smart Grid, 10(2), 1898-1906. doi:10.1109/tsg.2017.2781468 es_ES
dc.description.references Zhou, J., Zhang, J., Cai, X., Shi, G., Wang, J., & Zang, J. (2019). Design and Analysis of Flexible Multi-Microgrid Interconnection Scheme for Mitigating Power Fluctuation and Optimizing Storage Capacity. Energies, 12(11), 2132. doi:10.3390/en12112132 es_ES
dc.description.references Nguyen, A.-D., Bui, V.-H., Hussain, A., Nguyen, D.-H., & Kim, H.-M. (2018). Impact of Demand Response Programs on Optimal Operation of Multi-Microgrid System. Energies, 11(6), 1452. doi:10.3390/en11061452 es_ES
dc.description.references Rui, T., Li, G., Wang, Q., Hu, C., Shen, W., & Xu, B. (2019). Hierarchical Optimization Method for Energy Scheduling of Multiple Microgrids. Applied Sciences, 9(4), 624. doi:10.3390/app9040624 es_ES
dc.description.references Choobineh, M., Silva-Ortiz, D., & Mohagheghi, S. (2018). An Automation Scheme for Emergency Operation of a Multi-Microgrid Industrial Park. IEEE Transactions on Industry Applications, 54(6), 6450-6459. doi:10.1109/tia.2018.2851210 es_ES
dc.description.references Zeng, J., Peng, J., Zhang, C., Zhang, W., & Zhou, S. (2019). Research on islanding partition algorithm for the multi‐microgrids. The Journal of Engineering, 2019(16), 3345-3348. doi:10.1049/joe.2018.8395 es_ES
dc.description.references Farzin, H., Fotuhi-Firuzabad, M., & Moeini-Aghtaie, M. (2018). Role of Outage Management Strategy in Reliability Performance of Multi-Microgrid Distribution Systems. IEEE Transactions on Power Systems, 33(3), 2359-2369. doi:10.1109/tpwrs.2017.2746180 es_ES
dc.description.references Dey, B., Bhattacharyya, B., & Sharma, S. (2018). Optimal Sizing of Distributed Energy Resources in a Microgrid System with Highly Penetrated Renewables. Iranian Journal of Science and Technology, Transactions of Electrical Engineering, 43(S1), 527-540. doi:10.1007/s40998-018-0141-x es_ES
dc.description.references Hu, B., Wang, H., & Yao, S. (2017). Optimal economic operation of isolated community microgrid incorporating temperature controlling devices. Protection and Control of Modern Power Systems, 2(1). doi:10.1186/s41601-017-0037-1 es_ES
dc.description.references Rezaei, N., Ahmadi, A., Khazali, A. H., & Guerrero, J. M. (2018). Energy and Frequency Hierarchical Management System Using Information Gap Decision Theory for Islanded Microgrids. IEEE Transactions on Industrial Electronics, 65(10), 7921-7932. doi:10.1109/tie.2018.2798616 es_ES
dc.description.references Liu, W., Gu, W., Wang, J., Yu, W., & Xi, X. (2018). Game Theoretic Non-Cooperative Distributed Coordination Control for Multi-Microgrids. IEEE Transactions on Smart Grid, 9(6), 6986-6997. doi:10.1109/tsg.2018.2846732 es_ES
dc.description.references Zeng, J., Wang, Q., Liu, J., Chen, J., & Chen, H. (2019). A Potential Game Approach to Distributed Operational Optimization for Microgrid Energy Management With Renewable Energy and Demand Response. IEEE Transactions on Industrial Electronics, 66(6), 4479-4489. doi:10.1109/tie.2018.2864714 es_ES
dc.description.references Ju, C., Wang, P., Goel, L., & Xu, Y. (2018). A Two-Layer Energy Management System for Microgrids With Hybrid Energy Storage Considering Degradation Costs. IEEE Transactions on Smart Grid, 9(6), 6047-6057. doi:10.1109/tsg.2017.2703126 es_ES
dc.description.references Azeem, F., Narejo, G. B., & Shah, U. A. (2018). Integration of renewable distributed generation with storage and demand side load management in rural islanded microgrid. Energy Efficiency, 13(2), 217-235. doi:10.1007/s12053-018-9747-0 es_ES
dc.description.references Al Badwawi, R., Issa, W. R., Mallick, T. K., & Abusara, M. (2019). Supervisory Control for Power Management of an Islanded AC Microgrid Using a Frequency Signalling-Based Fuzzy Logic Controller. IEEE Transactions on Sustainable Energy, 10(1), 94-104. doi:10.1109/tste.2018.2825655 es_ES
dc.description.references Hosseinnia, H., Nazarpour, D., & Talavat, V. (2018). Multi-objective optimization framework for optimal planning of the microgrid (MG) under employing demand response program (DRP). Journal of Ambient Intelligence and Humanized Computing, 10(7), 2709-2730. doi:10.1007/s12652-018-0977-y es_ES
dc.description.references Choudhury, S., Bhowmik, P., & Rout, P. K. (2018). Robust dynamic fuzzy-based enhanced VPD/FQB controller for load sharing in microgrid with distributed generators. Electrical Engineering, 100(4), 2457-2472. doi:10.1007/s00202-018-0724-6 es_ES
dc.description.references Choudhury, S., Bhowmik, P., & Rout, P. K. (2018). Seeker optimization approach to dynamic PI based virtual impedance drooping for economic load sharing between PV and SOFC in an islanded microgrid. Sustainable Cities and Society, 37, 550-562. doi:10.1016/j.scs.2017.11.013 es_ES
dc.description.references Choudhury, S., Bhowmik, P., & Rout, P. K. (2018). Economic load sharing in a D-STATCOM Integrated Islanded Microgrid based on Fuzzy Logic and Seeker Optimization Approach. Sustainable Cities and Society, 37, 57-69. doi:10.1016/j.scs.2017.11.004 es_ES
dc.description.references Chaitanya, B. K., Yadav, A., & Pazoki, M. (2018). Wide area monitoring and protection of microgrid with DGs using modular artificial neural networks. Neural Computing and Applications, 32(7), 2125-2139. doi:10.1007/s00521-018-3750-4 es_ES
dc.description.references Wu, P., Huang, W., Tai, N., Ma, Z., Zheng, X., & Zhang, Y. (2019). A Multi-layer Coordinated Control Scheme to Improve the Operation Friendliness of Grid-Connected Multiple Microgrids. Energies, 12(2), 255. doi:10.3390/en12020255 es_ES
dc.description.references Uy, L., Uy, P., Siy, J., Chiu, A. S. F., & Sy, C. (2018). Target-oriented robust optimization of a microgrid system investment model. Frontiers in Energy, 12(3), 440-455. doi:10.1007/s11708-018-0563-1 es_ES
dc.description.references Hu, K., Li, W., Wang, L., Cao, S., Zhu, F., & Shou, Z. (2018). Energy management for multi-microgrid system based on model predictive control. Frontiers of Information Technology & Electronic Engineering, 19(11), 1340-1351. doi:10.1631/fitee.1601826 es_ES
dc.description.references Rahbar, K., Chai, C. C., & Zhang, R. (2018). Energy Cooperation Optimization in Microgrids With Renewable Energy Integration. IEEE Transactions on Smart Grid, 9(2), 1482-1493. doi:10.1109/tsg.2016.2600863 es_ES
dc.description.references Kumar, R. H., & Ushakumari, S. (2018). A Novel Control Strategy for Autonomous Operation of Isolated Microgrid with Prioritized Loads. Journal of The Institution of Engineers (India): Series B, 99(4), 323-330. doi:10.1007/s40031-018-0335-7 es_ES
dc.description.references Kaushal, J., & Basak, P. (2018). A Novel Approach for Determination of Power Quality Monitoring Index of an AC Microgrid Using Fuzzy Inference System. Iranian Journal of Science and Technology, Transactions of Electrical Engineering, 42(4), 429-450. doi:10.1007/s40998-018-0087-z es_ES
dc.description.references Sun, W., Ma, S., Alvarez‐Fernandez, I., Roofegari nejad, R., & Golshani, A. (2018). Optimal self‐healing strategy for microgrid islanding. IET Smart Grid, 1(4), 143-150. doi:10.1049/iet-stg.2018.0057 es_ES
dc.description.references Sandgani, M. R., & Sirouspour, S. (2018). Priority-Based Microgrid Energy Management in a Network Environment. IEEE Transactions on Sustainable Energy, 9(2), 980-990. doi:10.1109/tste.2017.2769558 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem