- -

Quality of the surface finish of self-compacting concrete

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Quality of the surface finish of self-compacting concrete

Mostrar el registro completo del ítem

Miñano Belmonte, I.; Benito Saorin, FJ.; Parra Costa, C.; Valcuende Payá, MO. (2020). Quality of the surface finish of self-compacting concrete. Journal of Building Engineering. 28:1-7. https://doi.org/10.1016/j.jobe.2019.101068

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/163770

Ficheros en el ítem

Metadatos del ítem

Título: Quality of the surface finish of self-compacting concrete
Autor: Miñano Belmonte, Isabel Benito Saorin, Francisco Javier Parra Costa, Carlos Valcuende Payá, Manuel Octavio
Entidad UPV: Universitat Politècnica de València. Departamento de Construcciones Arquitectónicas - Departament de Construccions Arquitectòniques
Fecha difusión:
Resumen:
[EN] In this work, surface damage due to the presence of pores in self-compacting concrete specimens is studied and cataloged with the QSI method which simplifies the inspection of concrete samples with optimal results, ...[+]
Palabras clave: Self-compacting concrete (SCC) , Surface finish , Pores and bubbles , QSI
Derechos de uso: Cerrado
Fuente:
Journal of Building Engineering. (eissn: 2352-7102 )
DOI: 10.1016/j.jobe.2019.101068
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.jobe.2019.101068
Tipo: Artículo

References

Miller, S. A., Horvath, A., Monteiro, P. J. M., & Ostertag, C. P. (2015). Greenhouse gas emissions from concrete can be reduced by using mix proportions, geometric aspects, and age as design factors. Environmental Research Letters, 10(11), 114017. doi:10.1088/1748-9326/10/11/114017

Valcuende, M., Parra, C., Marco, E., Garrido, A., Martínez, E., & Cánoves, J. (2012). Influence of limestone filler and viscosity-modifying admixture on the porous structure of self-compacting concrete. Construction and Building Materials, 28(1), 122-128. doi:10.1016/j.conbuildmat.2011.07.029

Lemaire, G., Escadeillas, G., & Ringot, E. (2005). Evaluating concrete surfaces using an image analysis process. Construction and Building Materials, 19(8), 604-611. doi:10.1016/j.conbuildmat.2005.01.025 [+]
Miller, S. A., Horvath, A., Monteiro, P. J. M., & Ostertag, C. P. (2015). Greenhouse gas emissions from concrete can be reduced by using mix proportions, geometric aspects, and age as design factors. Environmental Research Letters, 10(11), 114017. doi:10.1088/1748-9326/10/11/114017

Valcuende, M., Parra, C., Marco, E., Garrido, A., Martínez, E., & Cánoves, J. (2012). Influence of limestone filler and viscosity-modifying admixture on the porous structure of self-compacting concrete. Construction and Building Materials, 28(1), 122-128. doi:10.1016/j.conbuildmat.2011.07.029

Lemaire, G., Escadeillas, G., & Ringot, E. (2005). Evaluating concrete surfaces using an image analysis process. Construction and Building Materials, 19(8), 604-611. doi:10.1016/j.conbuildmat.2005.01.025

Pushpakumara, B. H. J., Silva, S. D., & Silva, G. H. M. J. S. D. (2017). Visual inspection and non-destructive tests-based rating method for concrete bridges. International Journal of Structural Engineering, 8(1), 74. doi:10.1504/ijstructe.2017.081672

Benito, F.; Valcuende, M.; Parra, C.; Rodríguez, C.; Miñano, I. Acabado superficial de hormigones autocompactantes. Método QSI. In Proceedings of the IV Congreso iberoamericano de Autocompactable, Porto, Portugal, 6–7 July 2015.

Tong, X. A new image‐basedmethodfor concrete bridge bottom crack detection. In Proceedings of the International Conference on Image Analysis and SignalProcessing (IASP), Wuhan, China, 21–23 October2011; pp. 568–571.

Majchrowski, R., Grzelka, M., Wieczorowski, M., Sadowski, Ł., & Gapiński, B. (2015). Large Area Concrete Surface Topography Measurements Using Optical 3D Scanner. Metrology and Measurement Systems, 22(4), 565-576. doi:10.1515/mms-2015-0046

Krolczyk, G. M., Maruda, R. W., Nieslony, P., & Wieczorowski, M. (2016). Surface morphology analysis of Duplex Stainless Steel (DSS) in Clean Production using the Power Spectral Density. Measurement, 94, 464-470. doi:10.1016/j.measurement.2016.08.023

Benito Saorin, F., Miñano Belmonte, I., Parra Costa, C., Rodriguez Lopez, C., & Valcuende Paya, M. (2018). QSI Methods for Determining the Quality of the Surface Finish of Concrete. Sustainability, 10(4), 931. doi:10.3390/su10040931

Liu, B., & Yang, T. (2017). Image analysis for detection of bugholes on concrete surface. Construction and Building Materials, 137, 432-440. doi:10.1016/j.conbuildmat.2017.01.098

García, L., Valcuende, M., Balasch, S., & Fernández-LLebrez, J. (2013). Study of Robustness of Self-Compacting Concretes Made with Low Fines Content. Journal of Materials in Civil Engineering, 25(4), 497-503. doi:10.1061/(asce)mt.1943-5533.0000609

Zhu, Z., & Brilakis, I. (2010). Machine Vision-Based Concrete Surface Quality Assessment. Journal of Construction Engineering and Management, 136(2), 210-218. doi:10.1061/(asce)co.1943-7862.0000126

Tang, P., Huber, D., & Akinci, B. (2011). Characterization of Laser Scanners and Algorithms for Detecting Flatness Defects on Concrete Surfaces. Journal of Computing in Civil Engineering, 25(1), 31-42. doi:10.1061/(asce)cp.1943-5487.0000073

Koch, C., Georgieva, K., Kasireddy, V., Akinci, B., & Fieguth, P. (2015). A review on computer vision based defect detection and condition assessment of concrete and asphalt civil infrastructure. Advanced Engineering Informatics, 29(2), 196-210. doi:10.1016/j.aei.2015.01.008

Jahanshahi, M. R., & Masri, S. F. (2012). Adaptive vision-based crack detection using 3D scene reconstruction for condition assessment of structures. Automation in Construction, 22, 567-576. doi:10.1016/j.autcon.2011.11.018

Kim, M.-K., Cheng, J. C. P., Sohn, H., & Chang, C.-C. (2015). A framework for dimensional and surface quality assessment of precast concrete elements using BIM and 3D laser scanning. Automation in Construction, 49, 225-238. doi:10.1016/j.autcon.2014.07.010

Adhikari, R. S., Moselhi, O., & Bagchi, A. (2014). Image-based retrieval of concrete crack properties for bridge inspection. Automation in Construction, 39, 180-194. doi:10.1016/j.autcon.2013.06.011

Kumar, R., & Bhattacharjee, B. (2003). Porosity, pore size distribution and in situ strength of concrete. Cement and Concrete Research, 33(1), 155-164. doi:10.1016/s0008-8846(02)00942-0

Kim, M.-K., Wang, Q., Yoon, S., & Sohn, H. (2019). A mirror-aided laser scanning system for geometric quality inspection of side surfaces of precast concrete elements. Measurement, 141, 420-428. doi:10.1016/j.measurement.2019.04.060

DIN EN 206‐9:2010 Concrete ‐ Part 9: Additional Rules forSelf‐compacting Concrete (SCC); German version EN 206‐9:2010.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem