- -

Quality of the surface finish of self-compacting concrete

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Quality of the surface finish of self-compacting concrete

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Miñano Belmonte, Isabel es_ES
dc.contributor.author Benito Saorin, Francisco Javier es_ES
dc.contributor.author Parra Costa, Carlos es_ES
dc.contributor.author Valcuende Payá, Manuel Octavio es_ES
dc.date.accessioned 2021-03-12T04:31:45Z
dc.date.available 2021-03-12T04:31:45Z
dc.date.issued 2020-03 es_ES
dc.identifier.uri http://hdl.handle.net/10251/163770
dc.description.abstract [EN] In this work, surface damage due to the presence of pores in self-compacting concrete specimens is studied and cataloged with the QSI method which simplifies the inspection of concrete samples with optimal results, even in curved areas. 48 test tubes distributed in a total of 12 mixtures were analyzed. The rheology of the concretes was analyzed and controlled. In concretes that obtain viscosities higher than 42 Pa s, a large number of large pores are detected on its surface, compared to concretes with lower viscosity and/or shear stress. The specimen with the worst surface finish that was manufactured (mixture n degrees. 11) had a viscosity of 58 Pa s and a shear stress of 26 Pa (QSI = 5.9%), compared to 14 Pa s and 15 Pa, respectively, of the concrete element that less surface area affected (QSI = 0.6%). The mixes H-2, H-3 and H-12 have the combination of lower values of viscosity and shear stress. This allows obtaining the best surface finishes, with average QSI values, respectively of 1.3% 1.6% and 1.6%. By increasing the flowability of the SCC, the number of pores and their size decrease. The values of viscosity and shear stress must be balanced to ensure an adequate flowability of the SCC. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Journal of Building Engineering es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Self-compacting concrete (SCC) es_ES
dc.subject Surface finish es_ES
dc.subject Pores and bubbles es_ES
dc.subject QSI es_ES
dc.subject.classification CONSTRUCCIONES ARQUITECTONICAS es_ES
dc.title Quality of the surface finish of self-compacting concrete es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.jobe.2019.101068 es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Construcciones Arquitectónicas - Departament de Construccions Arquitectòniques es_ES
dc.description.bibliographicCitation Miñano Belmonte, I.; Benito Saorin, FJ.; Parra Costa, C.; Valcuende Payá, MO. (2020). Quality of the surface finish of self-compacting concrete. Journal of Building Engineering. 28:1-7. https://doi.org/10.1016/j.jobe.2019.101068 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.jobe.2019.101068 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 7 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 28 es_ES
dc.identifier.eissn 2352-7102 es_ES
dc.relation.pasarela S\398671 es_ES
dc.description.references Miller, S. A., Horvath, A., Monteiro, P. J. M., & Ostertag, C. P. (2015). Greenhouse gas emissions from concrete can be reduced by using mix proportions, geometric aspects, and age as design factors. Environmental Research Letters, 10(11), 114017. doi:10.1088/1748-9326/10/11/114017 es_ES
dc.description.references Valcuende, M., Parra, C., Marco, E., Garrido, A., Martínez, E., & Cánoves, J. (2012). Influence of limestone filler and viscosity-modifying admixture on the porous structure of self-compacting concrete. Construction and Building Materials, 28(1), 122-128. doi:10.1016/j.conbuildmat.2011.07.029 es_ES
dc.description.references Lemaire, G., Escadeillas, G., & Ringot, E. (2005). Evaluating concrete surfaces using an image analysis process. Construction and Building Materials, 19(8), 604-611. doi:10.1016/j.conbuildmat.2005.01.025 es_ES
dc.description.references Pushpakumara, B. H. J., Silva, S. D., & Silva, G. H. M. J. S. D. (2017). Visual inspection and non-destructive tests-based rating method for concrete bridges. International Journal of Structural Engineering, 8(1), 74. doi:10.1504/ijstructe.2017.081672 es_ES
dc.description.references Benito, F.; Valcuende, M.; Parra, C.; Rodríguez, C.; Miñano, I. Acabado superficial de hormigones autocompactantes. Método QSI. In Proceedings of the IV Congreso iberoamericano de Autocompactable, Porto, Portugal, 6–7 July 2015. es_ES
dc.description.references Tong, X. A new image‐basedmethodfor concrete bridge bottom crack detection. In Proceedings of the International Conference on Image Analysis and SignalProcessing (IASP), Wuhan, China, 21–23 October2011; pp. 568–571. es_ES
dc.description.references Majchrowski, R., Grzelka, M., Wieczorowski, M., Sadowski, Ł., & Gapiński, B. (2015). Large Area Concrete Surface Topography Measurements Using Optical 3D Scanner. Metrology and Measurement Systems, 22(4), 565-576. doi:10.1515/mms-2015-0046 es_ES
dc.description.references Krolczyk, G. M., Maruda, R. W., Nieslony, P., & Wieczorowski, M. (2016). Surface morphology analysis of Duplex Stainless Steel (DSS) in Clean Production using the Power Spectral Density. Measurement, 94, 464-470. doi:10.1016/j.measurement.2016.08.023 es_ES
dc.description.references Benito Saorin, F., Miñano Belmonte, I., Parra Costa, C., Rodriguez Lopez, C., & Valcuende Paya, M. (2018). QSI Methods for Determining the Quality of the Surface Finish of Concrete. Sustainability, 10(4), 931. doi:10.3390/su10040931 es_ES
dc.description.references Liu, B., & Yang, T. (2017). Image analysis for detection of bugholes on concrete surface. Construction and Building Materials, 137, 432-440. doi:10.1016/j.conbuildmat.2017.01.098 es_ES
dc.description.references García, L., Valcuende, M., Balasch, S., & Fernández-LLebrez, J. (2013). Study of Robustness of Self-Compacting Concretes Made with Low Fines Content. Journal of Materials in Civil Engineering, 25(4), 497-503. doi:10.1061/(asce)mt.1943-5533.0000609 es_ES
dc.description.references Zhu, Z., & Brilakis, I. (2010). Machine Vision-Based Concrete Surface Quality Assessment. Journal of Construction Engineering and Management, 136(2), 210-218. doi:10.1061/(asce)co.1943-7862.0000126 es_ES
dc.description.references Tang, P., Huber, D., & Akinci, B. (2011). Characterization of Laser Scanners and Algorithms for Detecting Flatness Defects on Concrete Surfaces. Journal of Computing in Civil Engineering, 25(1), 31-42. doi:10.1061/(asce)cp.1943-5487.0000073 es_ES
dc.description.references Koch, C., Georgieva, K., Kasireddy, V., Akinci, B., & Fieguth, P. (2015). A review on computer vision based defect detection and condition assessment of concrete and asphalt civil infrastructure. Advanced Engineering Informatics, 29(2), 196-210. doi:10.1016/j.aei.2015.01.008 es_ES
dc.description.references Jahanshahi, M. R., & Masri, S. F. (2012). Adaptive vision-based crack detection using 3D scene reconstruction for condition assessment of structures. Automation in Construction, 22, 567-576. doi:10.1016/j.autcon.2011.11.018 es_ES
dc.description.references Kim, M.-K., Cheng, J. C. P., Sohn, H., & Chang, C.-C. (2015). A framework for dimensional and surface quality assessment of precast concrete elements using BIM and 3D laser scanning. Automation in Construction, 49, 225-238. doi:10.1016/j.autcon.2014.07.010 es_ES
dc.description.references Adhikari, R. S., Moselhi, O., & Bagchi, A. (2014). Image-based retrieval of concrete crack properties for bridge inspection. Automation in Construction, 39, 180-194. doi:10.1016/j.autcon.2013.06.011 es_ES
dc.description.references Kumar, R., & Bhattacharjee, B. (2003). Porosity, pore size distribution and in situ strength of concrete. Cement and Concrete Research, 33(1), 155-164. doi:10.1016/s0008-8846(02)00942-0 es_ES
dc.description.references Kim, M.-K., Wang, Q., Yoon, S., & Sohn, H. (2019). A mirror-aided laser scanning system for geometric quality inspection of side surfaces of precast concrete elements. Measurement, 141, 420-428. doi:10.1016/j.measurement.2019.04.060 es_ES
dc.description.references DIN EN 206‐9:2010 Concrete ‐ Part 9: Additional Rules forSelf‐compacting Concrete (SCC); German version EN 206‐9:2010. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem