- -

CMMSE-2019 mean-based iterative methods for solving nonlinear chemistry problems

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

CMMSE-2019 mean-based iterative methods for solving nonlinear chemistry problems

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Chicharro, Francisco I. es_ES
dc.contributor.author Cordero Barbero, Alicia es_ES
dc.contributor.author Martínez, Tobías H. es_ES
dc.contributor.author Torregrosa Sánchez, Juan Ramón es_ES
dc.date.accessioned 2021-03-12T04:31:47Z
dc.date.available 2021-03-12T04:31:47Z
dc.date.issued 2020-03 es_ES
dc.identifier.issn 0259-9791 es_ES
dc.identifier.uri http://hdl.handle.net/10251/163771
dc.description.abstract [EN] The third-order iterative method designed by Weerakoon and Fernando includes the arithmetic mean of two functional evaluations in its expression. Replacing this arithmetic mean with different means, other iterative methods have been proposed in the literature. The evolution of these methods in terms of order of convergence implies the inclusion of a weight function for each case, showing an optimal fourth-order convergence, in the sense of Kung-Traub's conjecture. The analysis of these new schemes is performed by means of complex dynamics. These methods are applied on the solution of the nonlinear Colebrook-White equation and the nonlinear system of the equilibrium conversion, both frequently used in Chemistry. es_ES
dc.description.sponsorship This research was partially supported by PGC2018-095896-B-C22 (MCIU/AEI/FEDER/UE) and Generalitat Valenciana PROMETEO/2016/089. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Journal of Mathematical Chemistry es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Nonlinear systems es_ES
dc.subject Iterative method es_ES
dc.subject Weight functions es_ES
dc.subject Complex dynamics es_ES
dc.subject Basin of attraction es_ES
dc.subject Chemical applications es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title CMMSE-2019 mean-based iterative methods for solving nonlinear chemistry problems es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10910-019-01085-2 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F089/ES/Resolución de ecuaciones y sistemas no lineales mediante técnicas iterativas: análisis dinámico y aplicaciones/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-095896-B-C22/ES/DISEÑO, ANALISIS Y ESTABILIDAD DE PROCESOS ITERATIVOS APLICADOS A LAS ECUACIONES INTEGRALES Y MATRICIALES Y A LA COMUNICACION AEROESPACIAL/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Matemática Multidisciplinar - Institut Universitari de Matemàtica Multidisciplinària es_ES
dc.description.bibliographicCitation Chicharro, FI.; Cordero Barbero, A.; Martínez, TH.; Torregrosa Sánchez, JR. (2020). CMMSE-2019 mean-based iterative methods for solving nonlinear chemistry problems. Journal of Mathematical Chemistry. 58(3):555-572. https://doi.org/10.1007/s10910-019-01085-2 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s10910-019-01085-2 es_ES
dc.description.upvformatpinicio 555 es_ES
dc.description.upvformatpfin 572 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 58 es_ES
dc.description.issue 3 es_ES
dc.relation.pasarela S\423821 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Ciencia, Innovación y Universidades es_ES
dc.description.references O. Ababneh, New Newton’s method with third order convergence for solving nonlinear equations. World Acad. Sci. Eng. Technol. 61, 1071–1073 (2012) es_ES
dc.description.references S. Amat, S. Busquier, Advances in iterative methods for nonlinear equations, chapter 5. SEMA SIMAI Springer Series. (Springer, Berlin, 2016), vol. 10, pp. 79–111 es_ES
dc.description.references R. Behl, Í. Sarría, R. González, Á.A. Magreñán, Highly efficient family of iterative methods for solving nonlinear models. J. Comput. Appl. Math. 346, 110–132 (2019) es_ES
dc.description.references B. Campos, J. Canela, P. Vindel, Convergence regions for the Chebyshev-Halley family. Commun. Nonlinear Sci. Numer. Simul. 56, 508–525 (2018) es_ES
dc.description.references F.I. Chicharro, A. Cordero, J.R. Torregrosa, Drawing dynamical and parameters planes of iterative families and methods. Sci. World J. 780513, 1–11 (2013) es_ES
dc.description.references F.I. Chicharro, A. Cordero, J.R. Torregrosa, Dynamics of iterative families with memory based on weight functions procedure. J. Comput. Appl. Math. 354, 286–298 (2019) es_ES
dc.description.references C.F. Colebrook, C.M. White, Experiments with fluid friction in roughened pipes. Proc. R. Soc. Lond. 161, 367–381 (1937) es_ES
dc.description.references A. Constantinides, N. Mostoufi, Numerical Methods for Chemical Engineers with MATLAB Applications (Prentice-Hall, Englewood Cliffs, 1999) es_ES
dc.description.references A. Cordero, J. Franceschi, J.R. Torregrosa, A.C. Zagati, A convex combination approach for mean-based variants of Newton’s method. Symmetry 11, 1062 (2019) es_ES
dc.description.references A. Cordero, J.R. Torregrosa, Variants of Newton’s method using fifth order quadrature formulas. Appl. Math. Comput. 190, 686–698 (2007) es_ES
dc.description.references H.T. Kung, J.F. Traub, Optimal order of one-point and multipoint iteration. J. Assoc. Comput. Math. 21, 643–651 (1974) es_ES
dc.description.references T. Lukić, N. Ralević, Geometric mean Newton’s method for simple and multiple roots. Appl. Math. Lett. 21, 30–36 (2008) es_ES
dc.description.references A. Özban, Some new variants of Newton’s method. Appl. Math. Lett. 17, 677–682 (2004) es_ES
dc.description.references M. Petković, B. Neta, L. Petković, J. Dz̆unić, Multipoint Methods for Solving Nonlinear Equations (Academic Press, Cambridge, 2013) es_ES
dc.description.references E. Shashi, Transmission Pipeline Calculations and Simulations Manual, Fluid Flow in Pipes (Elsevier, London, 2015), pp. 149–234 es_ES
dc.description.references M.K. Singh, A.K. Singh, A new-mean type variant of Newton’s method for simple and multiple roots. Int. J. Math. Trends Technol. 49, 174–177 (2017) es_ES
dc.description.references K. Verma, On the centroidal mean Newton’s method for simple and multiple roots of nonlinear equations. Int. J. Comput. Sci. Math. 7, 126–143 (2016) es_ES
dc.description.references S. Weerakoon, T.G.I. Fernando, A variant of Newton’s method with third-order convergence. Appl. Math. Lett. 13, 87–93 (2000) es_ES
dc.description.references Z. Xiaojian, A class of Newton’s methods with third-order convergence. Appl. Math. Lett. 20, 1026–1030 (2007) es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem