Mostrar el registro sencillo del ítem
dc.contributor.author | Chicharro, Francisco I. | es_ES |
dc.contributor.author | Cordero Barbero, Alicia | es_ES |
dc.contributor.author | Martínez, Tobías H. | es_ES |
dc.contributor.author | Torregrosa Sánchez, Juan Ramón | es_ES |
dc.date.accessioned | 2021-03-12T04:31:47Z | |
dc.date.available | 2021-03-12T04:31:47Z | |
dc.date.issued | 2020-03 | es_ES |
dc.identifier.issn | 0259-9791 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/163771 | |
dc.description.abstract | [EN] The third-order iterative method designed by Weerakoon and Fernando includes the arithmetic mean of two functional evaluations in its expression. Replacing this arithmetic mean with different means, other iterative methods have been proposed in the literature. The evolution of these methods in terms of order of convergence implies the inclusion of a weight function for each case, showing an optimal fourth-order convergence, in the sense of Kung-Traub's conjecture. The analysis of these new schemes is performed by means of complex dynamics. These methods are applied on the solution of the nonlinear Colebrook-White equation and the nonlinear system of the equilibrium conversion, both frequently used in Chemistry. | es_ES |
dc.description.sponsorship | This research was partially supported by PGC2018-095896-B-C22 (MCIU/AEI/FEDER/UE) and Generalitat Valenciana PROMETEO/2016/089. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Journal of Mathematical Chemistry | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Nonlinear systems | es_ES |
dc.subject | Iterative method | es_ES |
dc.subject | Weight functions | es_ES |
dc.subject | Complex dynamics | es_ES |
dc.subject | Basin of attraction | es_ES |
dc.subject | Chemical applications | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | CMMSE-2019 mean-based iterative methods for solving nonlinear chemistry problems | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s10910-019-01085-2 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F089/ES/Resolución de ecuaciones y sistemas no lineales mediante técnicas iterativas: análisis dinámico y aplicaciones/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-095896-B-C22/ES/DISEÑO, ANALISIS Y ESTABILIDAD DE PROCESOS ITERATIVOS APLICADOS A LAS ECUACIONES INTEGRALES Y MATRICIALES Y A LA COMUNICACION AEROESPACIAL/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Matemática Multidisciplinar - Institut Universitari de Matemàtica Multidisciplinària | es_ES |
dc.description.bibliographicCitation | Chicharro, FI.; Cordero Barbero, A.; Martínez, TH.; Torregrosa Sánchez, JR. (2020). CMMSE-2019 mean-based iterative methods for solving nonlinear chemistry problems. Journal of Mathematical Chemistry. 58(3):555-572. https://doi.org/10.1007/s10910-019-01085-2 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s10910-019-01085-2 | es_ES |
dc.description.upvformatpinicio | 555 | es_ES |
dc.description.upvformatpfin | 572 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 58 | es_ES |
dc.description.issue | 3 | es_ES |
dc.relation.pasarela | S\423821 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Ministerio de Ciencia, Innovación y Universidades | es_ES |
dc.description.references | O. Ababneh, New Newton’s method with third order convergence for solving nonlinear equations. World Acad. Sci. Eng. Technol. 61, 1071–1073 (2012) | es_ES |
dc.description.references | S. Amat, S. Busquier, Advances in iterative methods for nonlinear equations, chapter 5. SEMA SIMAI Springer Series. (Springer, Berlin, 2016), vol. 10, pp. 79–111 | es_ES |
dc.description.references | R. Behl, Í. Sarría, R. González, Á.A. Magreñán, Highly efficient family of iterative methods for solving nonlinear models. J. Comput. Appl. Math. 346, 110–132 (2019) | es_ES |
dc.description.references | B. Campos, J. Canela, P. Vindel, Convergence regions for the Chebyshev-Halley family. Commun. Nonlinear Sci. Numer. Simul. 56, 508–525 (2018) | es_ES |
dc.description.references | F.I. Chicharro, A. Cordero, J.R. Torregrosa, Drawing dynamical and parameters planes of iterative families and methods. Sci. World J. 780513, 1–11 (2013) | es_ES |
dc.description.references | F.I. Chicharro, A. Cordero, J.R. Torregrosa, Dynamics of iterative families with memory based on weight functions procedure. J. Comput. Appl. Math. 354, 286–298 (2019) | es_ES |
dc.description.references | C.F. Colebrook, C.M. White, Experiments with fluid friction in roughened pipes. Proc. R. Soc. Lond. 161, 367–381 (1937) | es_ES |
dc.description.references | A. Constantinides, N. Mostoufi, Numerical Methods for Chemical Engineers with MATLAB Applications (Prentice-Hall, Englewood Cliffs, 1999) | es_ES |
dc.description.references | A. Cordero, J. Franceschi, J.R. Torregrosa, A.C. Zagati, A convex combination approach for mean-based variants of Newton’s method. Symmetry 11, 1062 (2019) | es_ES |
dc.description.references | A. Cordero, J.R. Torregrosa, Variants of Newton’s method using fifth order quadrature formulas. Appl. Math. Comput. 190, 686–698 (2007) | es_ES |
dc.description.references | H.T. Kung, J.F. Traub, Optimal order of one-point and multipoint iteration. J. Assoc. Comput. Math. 21, 643–651 (1974) | es_ES |
dc.description.references | T. Lukić, N. Ralević, Geometric mean Newton’s method for simple and multiple roots. Appl. Math. Lett. 21, 30–36 (2008) | es_ES |
dc.description.references | A. Özban, Some new variants of Newton’s method. Appl. Math. Lett. 17, 677–682 (2004) | es_ES |
dc.description.references | M. Petković, B. Neta, L. Petković, J. Dz̆unić, Multipoint Methods for Solving Nonlinear Equations (Academic Press, Cambridge, 2013) | es_ES |
dc.description.references | E. Shashi, Transmission Pipeline Calculations and Simulations Manual, Fluid Flow in Pipes (Elsevier, London, 2015), pp. 149–234 | es_ES |
dc.description.references | M.K. Singh, A.K. Singh, A new-mean type variant of Newton’s method for simple and multiple roots. Int. J. Math. Trends Technol. 49, 174–177 (2017) | es_ES |
dc.description.references | K. Verma, On the centroidal mean Newton’s method for simple and multiple roots of nonlinear equations. Int. J. Comput. Sci. Math. 7, 126–143 (2016) | es_ES |
dc.description.references | S. Weerakoon, T.G.I. Fernando, A variant of Newton’s method with third-order convergence. Appl. Math. Lett. 13, 87–93 (2000) | es_ES |
dc.description.references | Z. Xiaojian, A class of Newton’s methods with third-order convergence. Appl. Math. Lett. 20, 1026–1030 (2007) | es_ES |