O. Ababneh, New Newton’s method with third order convergence for solving nonlinear equations. World Acad. Sci. Eng. Technol. 61, 1071–1073 (2012)
S. Amat, S. Busquier, Advances in iterative methods for nonlinear equations, chapter 5. SEMA SIMAI Springer Series. (Springer, Berlin, 2016), vol. 10, pp. 79–111
R. Behl, Í. Sarría, R. González, Á.A. Magreñán, Highly efficient family of iterative methods for solving nonlinear models. J. Comput. Appl. Math. 346, 110–132 (2019)
[+]
O. Ababneh, New Newton’s method with third order convergence for solving nonlinear equations. World Acad. Sci. Eng. Technol. 61, 1071–1073 (2012)
S. Amat, S. Busquier, Advances in iterative methods for nonlinear equations, chapter 5. SEMA SIMAI Springer Series. (Springer, Berlin, 2016), vol. 10, pp. 79–111
R. Behl, Í. Sarría, R. González, Á.A. Magreñán, Highly efficient family of iterative methods for solving nonlinear models. J. Comput. Appl. Math. 346, 110–132 (2019)
B. Campos, J. Canela, P. Vindel, Convergence regions for the Chebyshev-Halley family. Commun. Nonlinear Sci. Numer. Simul. 56, 508–525 (2018)
F.I. Chicharro, A. Cordero, J.R. Torregrosa, Drawing dynamical and parameters planes of iterative families and methods. Sci. World J. 780513, 1–11 (2013)
F.I. Chicharro, A. Cordero, J.R. Torregrosa, Dynamics of iterative families with memory based on weight functions procedure. J. Comput. Appl. Math. 354, 286–298 (2019)
C.F. Colebrook, C.M. White, Experiments with fluid friction in roughened pipes. Proc. R. Soc. Lond. 161, 367–381 (1937)
A. Constantinides, N. Mostoufi, Numerical Methods for Chemical Engineers with MATLAB Applications (Prentice-Hall, Englewood Cliffs, 1999)
A. Cordero, J. Franceschi, J.R. Torregrosa, A.C. Zagati, A convex combination approach for mean-based variants of Newton’s method. Symmetry 11, 1062 (2019)
A. Cordero, J.R. Torregrosa, Variants of Newton’s method using fifth order quadrature formulas. Appl. Math. Comput. 190, 686–698 (2007)
H.T. Kung, J.F. Traub, Optimal order of one-point and multipoint iteration. J. Assoc. Comput. Math. 21, 643–651 (1974)
T. Lukić, N. Ralević, Geometric mean Newton’s method for simple and multiple roots. Appl. Math. Lett. 21, 30–36 (2008)
A. Özban, Some new variants of Newton’s method. Appl. Math. Lett. 17, 677–682 (2004)
M. Petković, B. Neta, L. Petković, J. Dz̆unić, Multipoint Methods for Solving Nonlinear Equations (Academic Press, Cambridge, 2013)
E. Shashi, Transmission Pipeline Calculations and Simulations Manual, Fluid Flow in Pipes (Elsevier, London, 2015), pp. 149–234
M.K. Singh, A.K. Singh, A new-mean type variant of Newton’s method for simple and multiple roots. Int. J. Math. Trends Technol. 49, 174–177 (2017)
K. Verma, On the centroidal mean Newton’s method for simple and multiple roots of nonlinear equations. Int. J. Comput. Sci. Math. 7, 126–143 (2016)
S. Weerakoon, T.G.I. Fernando, A variant of Newton’s method with third-order convergence. Appl. Math. Lett. 13, 87–93 (2000)
Z. Xiaojian, A class of Newton’s methods with third-order convergence. Appl. Math. Lett. 20, 1026–1030 (2007)
[-]