- -

Hot Air and Microwave Combined Drying of Potato Monitored by Infrared Thermography

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Hot Air and Microwave Combined Drying of Potato Monitored by Infrared Thermography

Mostrar el registro completo del ítem

Tomas-Egea, JA.; Traffano-Schiffo, MV.; Castro Giraldez, M.; Fito Suñer, PJ. (2021). Hot Air and Microwave Combined Drying of Potato Monitored by Infrared Thermography. Applied Sciences. 11(4):1-12. https://doi.org/10.3390/app11041730

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/163823

Ficheros en el ítem

Metadatos del ítem

Título: Hot Air and Microwave Combined Drying of Potato Monitored by Infrared Thermography
Autor: Tomas-Egea, Juan Angel Traffano-Schiffo, Maria Victoria Castro Giraldez, Marta Fito Suñer, Pedro José
Entidad UPV: Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments
Universitat Politècnica de València. Instituto Universitario de Ingeniería de Alimentos para el Desarrollo - Institut Universitari d'Enginyeria d'Aliments per al Desenvolupament
Fecha difusión:
Resumen:
[EN] Hot air drying (HAD) at temperatures below the spontaneous evaporation temperature could be combined with microwave (MW) radiation as a thermal energy source in order to reduce the drying time. A photon flux in the ...[+]
Palabras clave: Drying , Hot air drying , Microwave drying , Infrared thermography , Water transport , Combined drying
Derechos de uso: Reconocimiento (by)
Fuente:
Applied Sciences. (eissn: 2076-3417 )
DOI: 10.3390/app11041730
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/app11041730
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//AGL2016-80643-R/ES/UTILIZACION DE LAS PROPIEDADES DIELECTRICAS EN EL CONTROL DE LA CALIDAD Y DE LA SEGURIDAD DE LA CARNE DE AVE/
Agradecimientos:
The authors acknowledge the financial support from THE SPANISH MINISTERIO DE ECONOMÍA, INDUSTRIA Y COMPETITIVIDAD, Programa Estatal de I+D+i orientada a los Retos de la Sociedad AGL2016-80643-R, Agencia Estatal de ...[+]
Tipo: Artículo

References

Traffano-Schiffo, M. V., Castro-Giráldez, M., Fito, P. J., & Balaguer, N. (2014). Thermodynamic model of meat drying by infrarred thermography. Journal of Food Engineering, 128, 103-110. doi:10.1016/j.jfoodeng.2013.12.024

Dehghannya, J., Kadkhodaei, S., Heshmati, M. K., & Ghanbarzadeh, B. (2019). Ultrasound-assisted intensification of a hybrid intermittent microwave - hot air drying process of potato: Quality aspects and energy consumption. Ultrasonics, 96, 104-122. doi:10.1016/j.ultras.2019.02.005

Turkan, B., Canbolat, A. S., & Etemoglu, A. B. (2019). Numerical Investigation of Multiphase Transport Model for Hot-Air Drying of Food. Tarım Bilimleri Dergisi, 518-529. doi:10.15832/ankutbd.441925 [+]
Traffano-Schiffo, M. V., Castro-Giráldez, M., Fito, P. J., & Balaguer, N. (2014). Thermodynamic model of meat drying by infrarred thermography. Journal of Food Engineering, 128, 103-110. doi:10.1016/j.jfoodeng.2013.12.024

Dehghannya, J., Kadkhodaei, S., Heshmati, M. K., & Ghanbarzadeh, B. (2019). Ultrasound-assisted intensification of a hybrid intermittent microwave - hot air drying process of potato: Quality aspects and energy consumption. Ultrasonics, 96, 104-122. doi:10.1016/j.ultras.2019.02.005

Turkan, B., Canbolat, A. S., & Etemoglu, A. B. (2019). Numerical Investigation of Multiphase Transport Model for Hot-Air Drying of Food. Tarım Bilimleri Dergisi, 518-529. doi:10.15832/ankutbd.441925

Cuibus, L., Castro-Giráldez, M., Fito, P. J., & Fabbri, A. (2014). Application of infrared thermography and dielectric spectroscopy for controlling freezing process of raw potato. Innovative Food Science & Emerging Technologies, 24, 80-87. doi:10.1016/j.ifset.2013.11.007

Castro-Giráldez, M., Fito, P. J., & Fito, P. (2011). Nonlinear thermodynamic approach to analyze long time osmotic dehydration of parenchymatic apple tissue. Journal of Food Engineering, 102(1), 34-42. doi:10.1016/j.jfoodeng.2010.07.032

Talens, C., Castro-Giraldez, M., & Fito, P. J. (2016). A thermodynamic model for hot air microwave drying of orange peel. Journal of Food Engineering, 175, 33-42. doi:10.1016/j.jfoodeng.2015.12.001

Markx, G. H., & Davey, C. L. (1999). The dielectric properties of biological cells at radiofrequencies: applications in biotechnology. Enzyme and Microbial Technology, 25(3-5), 161-171. doi:10.1016/s0141-0229(99)00008-3

Miraei Ashtiani, S.-H., Sturm, B., & Nasirahmadi, A. (2017). Effects of hot-air and hybrid hot air-microwave drying on drying kinetics and textural quality of nectarine slices. Heat and Mass Transfer, 54(4), 915-927. doi:10.1007/s00231-017-2187-0

Dehghannya, J., Bozorghi, S., & Heshmati, M. K. (2017). Low temperature hot air drying of potato cubes subjected to osmotic dehydration and intermittent microwave: drying kinetics, energy consumption and product quality indexes. Heat and Mass Transfer, 54(4), 929-954. doi:10.1007/s00231-017-2202-5

Swain, S., Samuel, D. V. K., Bal, L. M., Kar, A., & Sahoo, G. P. (2012). Modeling of microwave assisted drying of osmotically pretreated red sweet pepper (Capsicum annum L.). Food Science and Biotechnology, 21(4), 969-978. doi:10.1007/s10068-012-0127-9

Talens, C., Castro-Giraldez, M., & Fito, P. J. (2017). Effect of Microwave Power Coupled with Hot Air Drying on Sorption Isotherms and Microstructure of Orange Peel. Food and Bioprocess Technology, 11(4), 723-734. doi:10.1007/s11947-017-2041-x

Wang, Q., Li, S., Han, X., Ni, Y., Zhao, D., & Hao, J. (2019). Quality evaluation and drying kinetics of shitake mushrooms dried by hot air, infrared and intermittent microwave–assisted drying methods. LWT, 107, 236-242. doi:10.1016/j.lwt.2019.03.020

Glowacz, A. (2021). Fault diagnosis of electric impact drills using thermal imaging. Measurement, 171, 108815. doi:10.1016/j.measurement.2020.108815

Gonçalves, B. J., Giarola, T. M. de O., Pereira, D. F., Vilas Boas, E. V. de B., & de Resende, J. V. (2015). Using infrared thermography to evaluate the injuries of cold-stored guava. Journal of Food Science and Technology, 53(2), 1063-1070. doi:10.1007/s13197-015-2141-4

Gowen, A. A., Tiwari, B. K., Cullen, P. J., McDonnell, K., & O’Donnell, C. P. (2010). Applications of thermal imaging in food quality and safety assessment. Trends in Food Science & Technology, 21(4), 190-200. doi:10.1016/j.tifs.2009.12.002

Costa, N., Stelletta, C., Cannizzo, C., Gianesella, M., Lo Fiego, P., & Morgante, M. (2007). The use of thermography on the slaughter-line for the assessment of pork and raw ham quality. Italian Journal of Animal Science, 6(sup1), 704-706. doi:10.4081/ijas.2007.1s.704

Tao, Y. (2000). Combined IR imaging-neural network method for the estimation of internal temperature in cooked chicken meat. Optical Engineering, 39(11), 3032. doi:10.1117/1.1314595

J. G. Ibarra, Y. Tao, A. J. Cardarelli, & J. Shultz. (2000). COOKED AND RAW CHICKEN MEAT: EMISSIVITY IN THE MID-INFRARED REGION. Applied Engineering in Agriculture, 16(2), 143-148. doi:10.13031/2013.5060

Gan-Mor, S., Regev, R., Levi, A., & Eshel, D. (2011). Adapted thermal imaging for the development of postharvest precision steam-disinfection technology for carrots. Postharvest Biology and Technology, 59(3), 265-271. doi:10.1016/j.postharvbio.2010.10.003

Baranowski, P., Mazurek, W., Wozniak, J., & Majewska, U. (2012). Detection of early bruises in apples using hyperspectral data and thermal imaging. Journal of Food Engineering, 110(3), 345-355. doi:10.1016/j.jfoodeng.2011.12.038

Zhou, X., Ramaswamy, H., Qu, Y., Xu, R., & Wang, S. (2019). Combined radio frequency-vacuum and hot air drying of kiwifruits: Effect on drying uniformity, energy efficiency and product quality. Innovative Food Science & Emerging Technologies, 56, 102182. doi:10.1016/j.ifset.2019.102182

Su, D., Lv, W., Wang, Y., Li, D., & Wang, L. (2019). Drying characteristics and water dynamics during microwave hot-air flow rolling drying of Pleurotus eryngii. Drying Technology, 38(11), 1493-1504. doi:10.1080/07373937.2019.1648291

Wei, S., Wang, Z., Wang, F., Xie, W., Chen, P., & Yang, D. (2019). Simulation and experimental studies of heat and mass transfer in corn kernel during hot air drying. Food and Bioproducts Processing, 117, 360-372. doi:10.1016/j.fbp.2019.08.006

Pu, Y.-Y., Zhao, M., O’Donnell, C., & Sun, D.-W. (2018). Nondestructive quality evaluation of banana slices during microwave vacuum drying using spectral and imaging techniques. Drying Technology, 36(13), 1542-1553. doi:10.1080/07373937.2017.1415929

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem