- -

Hot Air and Microwave Combined Drying of Potato Monitored by Infrared Thermography

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Hot Air and Microwave Combined Drying of Potato Monitored by Infrared Thermography

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Tomas-Egea, Juan Angel es_ES
dc.contributor.author Traffano-Schiffo, Maria Victoria es_ES
dc.contributor.author Castro Giraldez, Marta es_ES
dc.contributor.author Fito Suñer, Pedro José es_ES
dc.date.accessioned 2021-03-13T04:31:21Z
dc.date.available 2021-03-13T04:31:21Z
dc.date.issued 2021-02-15 es_ES
dc.identifier.uri http://hdl.handle.net/10251/163823
dc.description.abstract [EN] Hot air drying (HAD) at temperatures below the spontaneous evaporation temperature could be combined with microwave (MW) radiation as a thermal energy source in order to reduce the drying time. A photon flux in the microwave range interacts with dipolar molecules (water) through orientation and induction, producing electrical energy storage and thermal energy accumulation and generating an increase in the internal energy of food. The different mechanisms involved in water transport could change when the microwave penetration depth exceeds the sample characteristic dimension of mass transport. The aim of this paper is to determine the effect of MW in the combined HAD-MW drying of raw potato in order to obtain the real driving forces and mechanisms involved in the water transport, with the purpose of optimizing the MW power used. For this purpose, combined drying was carried out on potato samples (0, 4 and 6 W/g). The sample surface temperature was monitored by infrared thermography, and the sample mass was measured continuously through a precision balance. In parallel with continuous drying, another drying treatment was performed at different times (20, 40, 60, 90, 120, 180, 420 min) and conditions (0, 4 and 6 W/g) to analyze the dielectric properties, mass, moisture, volume and water activity. The results show that it is possible to monitor combined drying by infrared thermography, and it can be concluded that the convection heating is mostly transformed into surface water evaporation, with negligible thermal conduction from the surface, and microwave radiation is mostly transformed into an increase in the potato's internal energy. es_ES
dc.description.sponsorship The authors acknowledge the financial support from THE SPANISH MINISTERIO DE ECONOMÍA, INDUSTRIA Y COMPETITIVIDAD, Programa Estatal de I+D+i orientada a los Retos de la Sociedad AGL2016-80643-R, Agencia Estatal de Investigación (AEI) and Fondo Europeo de Desarrollo Regional (FEDER). Juan Ángel Tomás-Egea wants to thank the FPI Predoctoral Program of the Universitat Politècnica de València for its support. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Applied Sciences es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Drying es_ES
dc.subject Hot air drying es_ES
dc.subject Microwave drying es_ES
dc.subject Infrared thermography es_ES
dc.subject Water transport es_ES
dc.subject Combined drying es_ES
dc.subject.classification TECNOLOGIA DE ALIMENTOS es_ES
dc.title Hot Air and Microwave Combined Drying of Potato Monitored by Infrared Thermography es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/app11041730 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//AGL2016-80643-R/ES/UTILIZACION DE LAS PROPIEDADES DIELECTRICAS EN EL CONTROL DE LA CALIDAD Y DE LA SEGURIDAD DE LA CARNE DE AVE/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Ingeniería de Alimentos para el Desarrollo - Institut Universitari d'Enginyeria d'Aliments per al Desenvolupament es_ES
dc.description.bibliographicCitation Tomas-Egea, JA.; Traffano-Schiffo, MV.; Castro Giraldez, M.; Fito Suñer, PJ. (2021). Hot Air and Microwave Combined Drying of Potato Monitored by Infrared Thermography. Applied Sciences. 11(4):1-12. https://doi.org/10.3390/app11041730 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/app11041730 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 12 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11 es_ES
dc.description.issue 4 es_ES
dc.identifier.eissn 2076-3417 es_ES
dc.relation.pasarela S\429125 es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Ministerio de Economía, Industria y Competitividad es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Traffano-Schiffo, M. V., Castro-Giráldez, M., Fito, P. J., & Balaguer, N. (2014). Thermodynamic model of meat drying by infrarred thermography. Journal of Food Engineering, 128, 103-110. doi:10.1016/j.jfoodeng.2013.12.024 es_ES
dc.description.references Dehghannya, J., Kadkhodaei, S., Heshmati, M. K., & Ghanbarzadeh, B. (2019). Ultrasound-assisted intensification of a hybrid intermittent microwave - hot air drying process of potato: Quality aspects and energy consumption. Ultrasonics, 96, 104-122. doi:10.1016/j.ultras.2019.02.005 es_ES
dc.description.references Turkan, B., Canbolat, A. S., & Etemoglu, A. B. (2019). Numerical Investigation of Multiphase Transport Model for Hot-Air Drying of Food. Tarım Bilimleri Dergisi, 518-529. doi:10.15832/ankutbd.441925 es_ES
dc.description.references Cuibus, L., Castro-Giráldez, M., Fito, P. J., & Fabbri, A. (2014). Application of infrared thermography and dielectric spectroscopy for controlling freezing process of raw potato. Innovative Food Science & Emerging Technologies, 24, 80-87. doi:10.1016/j.ifset.2013.11.007 es_ES
dc.description.references Castro-Giráldez, M., Fito, P. J., & Fito, P. (2011). Nonlinear thermodynamic approach to analyze long time osmotic dehydration of parenchymatic apple tissue. Journal of Food Engineering, 102(1), 34-42. doi:10.1016/j.jfoodeng.2010.07.032 es_ES
dc.description.references Talens, C., Castro-Giraldez, M., & Fito, P. J. (2016). A thermodynamic model for hot air microwave drying of orange peel. Journal of Food Engineering, 175, 33-42. doi:10.1016/j.jfoodeng.2015.12.001 es_ES
dc.description.references Markx, G. H., & Davey, C. L. (1999). The dielectric properties of biological cells at radiofrequencies: applications in biotechnology. Enzyme and Microbial Technology, 25(3-5), 161-171. doi:10.1016/s0141-0229(99)00008-3 es_ES
dc.description.references Miraei Ashtiani, S.-H., Sturm, B., & Nasirahmadi, A. (2017). Effects of hot-air and hybrid hot air-microwave drying on drying kinetics and textural quality of nectarine slices. Heat and Mass Transfer, 54(4), 915-927. doi:10.1007/s00231-017-2187-0 es_ES
dc.description.references Dehghannya, J., Bozorghi, S., & Heshmati, M. K. (2017). Low temperature hot air drying of potato cubes subjected to osmotic dehydration and intermittent microwave: drying kinetics, energy consumption and product quality indexes. Heat and Mass Transfer, 54(4), 929-954. doi:10.1007/s00231-017-2202-5 es_ES
dc.description.references Swain, S., Samuel, D. V. K., Bal, L. M., Kar, A., & Sahoo, G. P. (2012). Modeling of microwave assisted drying of osmotically pretreated red sweet pepper (Capsicum annum L.). Food Science and Biotechnology, 21(4), 969-978. doi:10.1007/s10068-012-0127-9 es_ES
dc.description.references Talens, C., Castro-Giraldez, M., & Fito, P. J. (2017). Effect of Microwave Power Coupled with Hot Air Drying on Sorption Isotherms and Microstructure of Orange Peel. Food and Bioprocess Technology, 11(4), 723-734. doi:10.1007/s11947-017-2041-x es_ES
dc.description.references Wang, Q., Li, S., Han, X., Ni, Y., Zhao, D., & Hao, J. (2019). Quality evaluation and drying kinetics of shitake mushrooms dried by hot air, infrared and intermittent microwave–assisted drying methods. LWT, 107, 236-242. doi:10.1016/j.lwt.2019.03.020 es_ES
dc.description.references Glowacz, A. (2021). Fault diagnosis of electric impact drills using thermal imaging. Measurement, 171, 108815. doi:10.1016/j.measurement.2020.108815 es_ES
dc.description.references Gonçalves, B. J., Giarola, T. M. de O., Pereira, D. F., Vilas Boas, E. V. de B., & de Resende, J. V. (2015). Using infrared thermography to evaluate the injuries of cold-stored guava. Journal of Food Science and Technology, 53(2), 1063-1070. doi:10.1007/s13197-015-2141-4 es_ES
dc.description.references Gowen, A. A., Tiwari, B. K., Cullen, P. J., McDonnell, K., & O’Donnell, C. P. (2010). Applications of thermal imaging in food quality and safety assessment. Trends in Food Science & Technology, 21(4), 190-200. doi:10.1016/j.tifs.2009.12.002 es_ES
dc.description.references Costa, N., Stelletta, C., Cannizzo, C., Gianesella, M., Lo Fiego, P., & Morgante, M. (2007). The use of thermography on the slaughter-line for the assessment of pork and raw ham quality. Italian Journal of Animal Science, 6(sup1), 704-706. doi:10.4081/ijas.2007.1s.704 es_ES
dc.description.references Tao, Y. (2000). Combined IR imaging-neural network method for the estimation of internal temperature in cooked chicken meat. Optical Engineering, 39(11), 3032. doi:10.1117/1.1314595 es_ES
dc.description.references J. G. Ibarra, Y. Tao, A. J. Cardarelli, & J. Shultz. (2000). COOKED AND RAW CHICKEN MEAT: EMISSIVITY IN THE MID-INFRARED REGION. Applied Engineering in Agriculture, 16(2), 143-148. doi:10.13031/2013.5060 es_ES
dc.description.references Gan-Mor, S., Regev, R., Levi, A., & Eshel, D. (2011). Adapted thermal imaging for the development of postharvest precision steam-disinfection technology for carrots. Postharvest Biology and Technology, 59(3), 265-271. doi:10.1016/j.postharvbio.2010.10.003 es_ES
dc.description.references Baranowski, P., Mazurek, W., Wozniak, J., & Majewska, U. (2012). Detection of early bruises in apples using hyperspectral data and thermal imaging. Journal of Food Engineering, 110(3), 345-355. doi:10.1016/j.jfoodeng.2011.12.038 es_ES
dc.description.references Zhou, X., Ramaswamy, H., Qu, Y., Xu, R., & Wang, S. (2019). Combined radio frequency-vacuum and hot air drying of kiwifruits: Effect on drying uniformity, energy efficiency and product quality. Innovative Food Science & Emerging Technologies, 56, 102182. doi:10.1016/j.ifset.2019.102182 es_ES
dc.description.references Su, D., Lv, W., Wang, Y., Li, D., & Wang, L. (2019). Drying characteristics and water dynamics during microwave hot-air flow rolling drying of Pleurotus eryngii. Drying Technology, 38(11), 1493-1504. doi:10.1080/07373937.2019.1648291 es_ES
dc.description.references Wei, S., Wang, Z., Wang, F., Xie, W., Chen, P., & Yang, D. (2019). Simulation and experimental studies of heat and mass transfer in corn kernel during hot air drying. Food and Bioproducts Processing, 117, 360-372. doi:10.1016/j.fbp.2019.08.006 es_ES
dc.description.references Pu, Y.-Y., Zhao, M., O’Donnell, C., & Sun, D.-W. (2018). Nondestructive quality evaluation of banana slices during microwave vacuum drying using spectral and imaging techniques. Drying Technology, 36(13), 1542-1553. doi:10.1080/07373937.2017.1415929 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem