Lai, H.-Z., Wang, S.-G., Wu, C.-Y., & Chen, Y.-C. (2015). Detection of Staphylococcus aureus by Functional Gold Nanoparticle-Based Affinity Surface-Assisted Laser Desorption/Ionization Mass Spectrometry. Analytical Chemistry, 87(4), 2114-2120. doi:10.1021/ac503097v
Cheng, J.-C., Huang, C.-L., Lin, C.-C., Chen, C.-C., Chang, Y.-C., Chang, S.-S., & Tseng, C.-P. (2006). Rapid Detection and Identification of Clinically Important Bacteria by High-Resolution Melting Analysis after Broad-Range Ribosomal RNA Real-Time PCR. Clinical Chemistry, 52(11), 1997-2004. doi:10.1373/clinchem.2006.069286
Moore, D. F., & Curry, J. I. (1998). Detection and Identification of
Mycobacterium tuberculosis
Directly from Sputum Sediments by Ligase Chain Reaction. Journal of Clinical Microbiology, 36(4), 1028-1031. doi:10.1128/jcm.36.4.1028-1031.1998
[+]
Lai, H.-Z., Wang, S.-G., Wu, C.-Y., & Chen, Y.-C. (2015). Detection of Staphylococcus aureus by Functional Gold Nanoparticle-Based Affinity Surface-Assisted Laser Desorption/Ionization Mass Spectrometry. Analytical Chemistry, 87(4), 2114-2120. doi:10.1021/ac503097v
Cheng, J.-C., Huang, C.-L., Lin, C.-C., Chen, C.-C., Chang, Y.-C., Chang, S.-S., & Tseng, C.-P. (2006). Rapid Detection and Identification of Clinically Important Bacteria by High-Resolution Melting Analysis after Broad-Range Ribosomal RNA Real-Time PCR. Clinical Chemistry, 52(11), 1997-2004. doi:10.1373/clinchem.2006.069286
Moore, D. F., & Curry, J. I. (1998). Detection and Identification of
Mycobacterium tuberculosis
Directly from Sputum Sediments by Ligase Chain Reaction. Journal of Clinical Microbiology, 36(4), 1028-1031. doi:10.1128/jcm.36.4.1028-1031.1998
CHANG, T. C., & HUANG, S. H. (1994). An Enzyme-Linked Immunosorbent Assay for the Rapid Detection of Staphylococcus aureus in Processed Foods. Journal of Food Protection, 57(3), 184-189. doi:10.4315/0362-028x-57.3.184
Vigneshvar, S., Sudhakumari, C. C., Senthilkumaran, B., & Prakash, H. (2016). Recent Advances in Biosensor Technology for Potential Applications – An Overview. Frontiers in Bioengineering and Biotechnology, 4. doi:10.3389/fbioe.2016.00011
Abbaspour, A., Norouz-Sarvestani, F., Noori, A., & Soltani, N. (2015). Aptamer-conjugated silver nanoparticles for electrochemical dual-aptamer-based sandwich detection of staphylococcus aureus. Biosensors and Bioelectronics, 68, 149-155. doi:10.1016/j.bios.2014.12.040
Wang, J., Wu, X., Wang, C., Shao, N., Dong, P., Xiao, R., & Wang, S. (2015). Magnetically Assisted Surface-Enhanced Raman Spectroscopy for the Detection of Staphylococcus aureus Based on Aptamer Recognition. ACS Applied Materials & Interfaces, 7(37), 20919-20929. doi:10.1021/acsami.5b06446
Felix, F. S., & Angnes, L. (2018). Electrochemical immunosensors – A powerful tool for analytical applications. Biosensors and Bioelectronics, 102, 470-478. doi:10.1016/j.bios.2017.11.029
Luppa, P. B., Sokoll, L. J., & Chan, D. W. (2001). Immunosensors—principles and applications to clinical chemistry. Clinica Chimica Acta, 314(1-2), 1-26. doi:10.1016/s0009-8981(01)00629-5
Lim, Y. C., Kouzani, A. Z., & Duan, W. (2010). Aptasensors: A Review. Journal of Biomedical Nanotechnology, 6(2), 93-105. doi:10.1166/jbn.2010.1103
Feng, C., Dai, S., & Wang, L. (2014). Optical aptasensors for quantitative detection of small biomolecules: A review. Biosensors and Bioelectronics, 59, 64-74. doi:10.1016/j.bios.2014.03.014
O’Sullivan, C. K. (2001). Aptasensors – the future of biosensing? Analytical and Bioanalytical Chemistry, 372(1), 44-48. doi:10.1007/s00216-001-1189-3
Leca‐Bouvier, B., & Blum, L. J. (2005). Biosensors for Protein Detection: A Review. Analytical Letters, 38(10), 1491-1517. doi:10.1081/al-200065780
Aznar, E., Oroval, M., Pascual, L., Murguía, J. R., Martínez-Máñez, R., & Sancenón, F. (2016). Gated Materials for On-Command Release of Guest Molecules. Chemical Reviews, 116(2), 561-718. doi:10.1021/acs.chemrev.5b00456
Sancenón, F., Pascual, L., Oroval, M., Aznar, E., & Martínez-Máñez, R. (2015). Gated Silica Mesoporous Materials in Sensing Applications. ChemistryOpen, 4(4), 418-437. doi:10.1002/open.201500053
Zelada-Guillén, G. A., Sebastián-Avila, J. L., Blondeau, P., Riu, J., & Rius, F. X. (2012). Label-free detection of Staphylococcus aureus in skin using real-time potentiometric biosensors based on carbon nanotubes and aptamers. Biosensors and Bioelectronics, 31(1), 226-232. doi:10.1016/j.bios.2011.10.021
Castillo, R. R., Baeza, A., & Vallet-Regí, M. (2017). Recent applications of the combination of mesoporous silica nanoparticles with nucleic acids: development of bioresponsive devices, carriers and sensors. Biomaterials Science, 5(3), 353-377. doi:10.1039/c6bm00872k
Kurt, H., Yüce, M., Hussain, B., & Budak, H. (2016). Dual-excitation upconverting nanoparticle and quantum dot aptasensor for multiplexed food pathogen detection. Biosensors and Bioelectronics, 81, 280-286. doi:10.1016/j.bios.2016.03.005
Chang, Y.-C., Yang, C.-Y., Sun, R.-L., Cheng, Y.-F., Kao, W.-C., & Yang, P.-C. (2013). Rapid single cell detection of Staphylococcus aureus by aptamer-conjugated gold nanoparticles. Scientific Reports, 3(1). doi:10.1038/srep01863
Borsa, B. A., Tuna, B. G., Hernandez, F. J., Hernandez, L. I., Bayramoglu, G., Arica, M. Y., & Ozalp, V. C. (2016). Staphylococcus aureus detection in blood samples by silica nanoparticle-oligonucleotides conjugates. Biosensors and Bioelectronics, 86, 27-32. doi:10.1016/j.bios.2016.06.023
Otri, I., El Sayed, S., Medaglia, S., Martínez‐Máñez, R., Aznar, E., & Sancenón, F. (2019). Simple Endotoxin Detection Using Polymyxin‐B‐Gated Nanoparticles. Chemistry – A European Journal, 25(15), 3770-3774. doi:10.1002/chem.201806306
Pascual, L., Baroja, I., Aznar, E., Sancenón, F., Marcos, M. D., Murguía, J. R., … Martínez-Máñez, R. (2015). Oligonucleotide-capped mesoporous silica nanoparticles as DNA-responsive dye delivery systems for genomic DNA detection. Chemical Communications, 51(8), 1414-1416. doi:10.1039/c4cc08306g
Ribes, À., Santiago-Felipe, S., Bernardos, A., Marcos, M. D., Pardo, T., Sancenón, F., … Aznar, E. (2017). Two New Fluorogenic Aptasensors Based on Capped Mesoporous Silica Nanoparticles to Detect Ochratoxin A. ChemistryOpen, 6(5), 653-659. doi:10.1002/open.201700106
Chen, Y., Santos, A., Wang, Y., Kumeria, T., Li, J., Wang, C., & Losic, D. (2015). Biomimetic Nanoporous Anodic Alumina Distributed Bragg Reflectors in the Form of Films and Microsized Particles for Sensing Applications. ACS Applied Materials & Interfaces, 7(35), 19816-19824. doi:10.1021/acsami.5b05904
De la Escosura-Muñiz, A., & Merkoçi, A. (2012). Nanochannels Preparation and Application in Biosensing. ACS Nano, 6(9), 7556-7583. doi:10.1021/nn301368z
Baranowska, M., Slota, A. J., Eravuchira, P. J., Macias, G., Xifré-Pérez, E., Pallares, J., … Marsal, L. F. (2014). Protein attachment to nanoporous anodic alumina for biotechnological applications: Influence of pore size, protein size and functionalization path. Colloids and Surfaces B: Biointerfaces, 122, 375-383. doi:10.1016/j.colsurfb.2014.07.027
Ribes, À., Xifré -Pérez, E., Aznar, E., Sancenón, F., Pardo, T., Marsal, L. F., & Martínez-Máñez, R. (2016). Molecular gated nanoporous anodic alumina for the detection of cocaine. Scientific Reports, 6(1). doi:10.1038/srep38649
Pla, L., Xifré-Pérez, E., Ribes, À., Aznar, E., Marcos, M. D., Marsal, L. F., … Sancenón, F. (2017). A Mycoplasma
Genomic DNA Probe using Gated Nanoporous Anodic Alumina. ChemPlusChem, 82(3), 337-341. doi:10.1002/cplu.201600651
Ribes, À., Aznar, E., Santiago-Felipe, S., Xifre-Perez, E., Tormo-Mas, M. Á., Pemán, J., … Martínez-Máñez, R. (2019). Selective and Sensitive Probe Based in Oligonucleotide-Capped Nanoporous Alumina for the Rapid Screening of Infection Produced by Candida albicans. ACS Sensors, 4(5), 1291-1298. doi:10.1021/acssensors.9b00169
Kreiswirth, B. N., Löfdahl, S., Betley, M. J., O’Reilly, M., Schlievert, P. M., Bergdoll, M. S., & Novick, R. P. (1983). The toxic shock syndrome exotoxin structural gene is not detectably transmitted by a prophage. Nature, 305(5936), 709-712. doi:10.1038/305709a0
Christensen, G. D., Simpson, W. A., Bisno, A. L., & Beachey, E. H. (1982). Adherence of slime-producing strains of Staphylococcus epidermidis to smooth surfaces. Infection and Immunity, 37(1), 318-326. doi:10.1128/iai.37.1.318-326.1982
Wagner, E., Doskar, J., & Götz, F. (1998). Physical and genetic map of the genome of Staphylococcus carnosus TM300. Microbiology, 144(2), 509-517. doi:10.1099/00221287-144-2-509
Tormo, M. Á., Knecht, E., Götz, F., Lasa, I., & Penadés, J. R. (2005). Bap-dependent biofilm formation by pathogenic species of Staphylococcus: evidence of horizontal gene transfer? Microbiology, 151(7), 2465-2475. doi:10.1099/mic.0.27865-0
Oliveira, K., Procop, G. W., Wilson, D., Coull, J., & Stender, H. (2002). Rapid Identification of
Staphylococcus aureus
Directly from Blood Cultures by Fluorescence In Situ Hybridization with Peptide Nucleic Acid Probes. Journal of Clinical Microbiology, 40(1), 247-251. doi:10.1128/jcm.40.1.247-251.2002
Marlowe, E. M., & Bankowski, M. J. (2011). Conventional and Molecular Methods for the Detection of Methicillin-Resistant Staphylococcus aureus. Journal of Clinical Microbiology, 49(9_Supplement). doi:10.1128/jcm.00791-11
Huang, S.-H., & Chang, T.-C. (2004). Detection of Staphylococcus aureus by a Sensitive Immuno-PCR Assay. Clinical Chemistry, 50(9), 1673-1674. doi:10.1373/clinchem.2004.033548
Burghardt, E. L., Flenker, K. S., Clark, K. C., Miguel, J., Ince, D., Winokur, P., … McNamara, J. O. (2016). Rapid, Culture-Free Detection of Staphylococcus aureus Bacteremia. PLOS ONE, 11(6), e0157234. doi:10.1371/journal.pone.0157234
[-]