dc.contributor.author |
Pla, Luis
|
es_ES |
dc.contributor.author |
Santiago Felipe, Sara
|
es_ES |
dc.contributor.author |
Tormo-Mas, María Ángeles
|
es_ES |
dc.contributor.author |
Pemán, Javier
|
es_ES |
dc.contributor.author |
Sancenón Galarza, Félix
|
es_ES |
dc.contributor.author |
Aznar, Elena
|
es_ES |
dc.contributor.author |
Martínez-Máñez, Ramón
|
es_ES |
dc.date.accessioned |
2021-03-16T04:31:10Z |
|
dc.date.available |
2021-03-16T04:31:10Z |
|
dc.date.issued |
2020-10-01 |
es_ES |
dc.identifier.issn |
0925-4005 |
es_ES |
dc.identifier.uri |
http://hdl.handle.net/10251/163876 |
|
dc.description.abstract |
[EN] The development of new detection systems for an accurate and rapid identification of pathogens has become an essential challenge in the biomedical field. Herein a highly selective platform based on aptamer-gated nano materials for specific Staphylococcus aureus detection is presented. In the proposed design, a nanoporous anodic alumina (NAA) scaffold is loaded with the fluorescent indicator rhodamine B, while pores entrances are capped by a DNA aptamer which selectively recognizes S. aureus cells in less than 1 h. When S. aureus cells are present, the solid is selectively uncapped, and the dye is released to the medium. This nanodevice allows the detection of bacterial concentrations between 2 and 5 CFU mL-1 (in buffer and blood, respectively) and it has demonstrated excellent behavior in terms of specificity and robustness. A set of 25 different clinical samples are analyzed using this simple procedure obtaining excellent results, which agree with conventional hospital reference techniques for the identification of S. aureus. This new method is sensitive, rapid and low cost, and avoids steps such as polymerase chain amplification reaction, which makes it suitable for use in point-of-care detection systems. |
es_ES |
dc.description.sponsorship |
This study was supported by the Spanish Government (projects RTI2018-100910-B-C41 and SAF2017-82251-R (MCUI/AEI/FEDER, UE)), the Generalitat Valenciana (project PROMETEO/2018/024), the Universitat Politecnica de Valencia-Instituto de Investigacion Sanitaria La Fe (B02-MIRSA project) and CIBER-BBN (NANOPATH and valorization project CANDI-EYE). It has been also co-financed by the EU through the Valencian Community ERDF PO 2014-2020. S.S. thanks the Instituto de Salud Carlos III and the European Social Fund for the financial support "Sara Borrell" (CD16/000237). L.P. thanks to Ministerio de Economia, Industria y Competitividad for his FPI grant. The authors are grateful for the professional English language editing to Mr. Arash Javadinejad, English Instructor and pubication Editor at the Instituto de Investigacion Sanitaria La Fe, Valencia, Spain. |
es_ES |
dc.language |
Inglés |
es_ES |
dc.publisher |
Elsevier |
es_ES |
dc.relation.ispartof |
Sensors and Actuators B Chemical |
es_ES |
dc.rights |
Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) |
es_ES |
dc.subject |
Aptamers |
es_ES |
dc.subject |
Gated materials |
es_ES |
dc.subject |
Staphylococcus aureus |
es_ES |
dc.subject |
Optical sensors |
es_ES |
dc.subject.classification |
QUIMICA ORGANICA |
es_ES |
dc.subject.classification |
QUIMICA INORGANICA |
es_ES |
dc.subject.classification |
QUIMICA ANALITICA |
es_ES |
dc.title |
Aptamer-Capped nanoporous anodic alumina for Staphylococcus aureus detection |
es_ES |
dc.type |
Artículo |
es_ES |
dc.identifier.doi |
10.1016/j.snb.2020.128281 |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/SAF2017-82251-R/ES/NUEVAS ESTRATEGIAS DE PREVENCION Y DIAGNOSTICO DE LAS INFECCIONES RELACIONADAS CON DISPOSITIVOS BIOMEDICOS CAUSADOS POR STAPHYLOCOCCUS SPP/ |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/IISLAFE//B02-MIRSA/ |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/MINECO//CD16%2F00237/ES/CD16%2F00237/ |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2018%2F024/ES/Sistemas avanzados de liberación controlada/ |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-100910-B-C41/ES/MATERIALES POROSOS INTELIGENTES MULTIFUNCIONALES Y DISPOSITIVOS ELECTRONICOS PARA LA LIBERACION DE FARMACOS, DETECCION DE DROGAS Y BIOMARCADORES Y COMUNICACION A NANOESCALA/ |
es_ES |
dc.rights.accessRights |
Abierto |
es_ES |
dc.contributor.affiliation |
Universitat Politècnica de València. Departamento de Química - Departament de Química |
es_ES |
dc.description.bibliographicCitation |
Pla, L.; Santiago Felipe, S.; Tormo-Mas, MÁ.; Pemán, J.; Sancenón Galarza, F.; Aznar, E.; Martínez-Máñez, R. (2020). Aptamer-Capped nanoporous anodic alumina for Staphylococcus aureus detection. Sensors and Actuators B Chemical. 320(128281). https://doi.org/10.1016/j.snb.2020.128281 |
es_ES |
dc.description.accrualMethod |
S |
es_ES |
dc.relation.publisherversion |
https://doi.org/10.1016/j.snb.2020.128281 |
es_ES |
dc.type.version |
info:eu-repo/semantics/publishedVersion |
es_ES |
dc.description.volume |
320 |
es_ES |
dc.description.issue |
128281 |
es_ES |
dc.relation.pasarela |
S\418487 |
es_ES |
dc.contributor.funder |
European Social Fund |
es_ES |
dc.contributor.funder |
Generalitat Valenciana |
es_ES |
dc.contributor.funder |
Agencia Estatal de Investigación |
es_ES |
dc.contributor.funder |
European Regional Development Fund |
es_ES |
dc.contributor.funder |
Universitat Politècnica de València |
es_ES |
dc.contributor.funder |
Instituto de Investigación Sanitaria La Fe |
es_ES |
dc.contributor.funder |
Ministerio de Ciencia, Innovación y Universidades |
es_ES |
dc.contributor.funder |
Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina |
es_ES |
dc.contributor.funder |
Ministerio de Economía y Competitividad |
es_ES |
dc.description.references |
Lai, H.-Z., Wang, S.-G., Wu, C.-Y., & Chen, Y.-C. (2015). Detection of Staphylococcus aureus by Functional Gold Nanoparticle-Based Affinity Surface-Assisted Laser Desorption/Ionization Mass Spectrometry. Analytical Chemistry, 87(4), 2114-2120. doi:10.1021/ac503097v |
es_ES |
dc.description.references |
Cheng, J.-C., Huang, C.-L., Lin, C.-C., Chen, C.-C., Chang, Y.-C., Chang, S.-S., & Tseng, C.-P. (2006). Rapid Detection and Identification of Clinically Important Bacteria by High-Resolution Melting Analysis after Broad-Range Ribosomal RNA Real-Time PCR. Clinical Chemistry, 52(11), 1997-2004. doi:10.1373/clinchem.2006.069286 |
es_ES |
dc.description.references |
Moore, D. F., & Curry, J. I. (1998). Detection and Identification of
Mycobacterium tuberculosis
Directly from Sputum Sediments by Ligase Chain Reaction. Journal of Clinical Microbiology, 36(4), 1028-1031. doi:10.1128/jcm.36.4.1028-1031.1998 |
es_ES |
dc.description.references |
CHANG, T. C., & HUANG, S. H. (1994). An Enzyme-Linked Immunosorbent Assay for the Rapid Detection of Staphylococcus aureus in Processed Foods. Journal of Food Protection, 57(3), 184-189. doi:10.4315/0362-028x-57.3.184 |
es_ES |
dc.description.references |
Vigneshvar, S., Sudhakumari, C. C., Senthilkumaran, B., & Prakash, H. (2016). Recent Advances in Biosensor Technology for Potential Applications – An Overview. Frontiers in Bioengineering and Biotechnology, 4. doi:10.3389/fbioe.2016.00011 |
es_ES |
dc.description.references |
Abbaspour, A., Norouz-Sarvestani, F., Noori, A., & Soltani, N. (2015). Aptamer-conjugated silver nanoparticles for electrochemical dual-aptamer-based sandwich detection of staphylococcus aureus. Biosensors and Bioelectronics, 68, 149-155. doi:10.1016/j.bios.2014.12.040 |
es_ES |
dc.description.references |
Wang, J., Wu, X., Wang, C., Shao, N., Dong, P., Xiao, R., & Wang, S. (2015). Magnetically Assisted Surface-Enhanced Raman Spectroscopy for the Detection of Staphylococcus aureus Based on Aptamer Recognition. ACS Applied Materials & Interfaces, 7(37), 20919-20929. doi:10.1021/acsami.5b06446 |
es_ES |
dc.description.references |
Felix, F. S., & Angnes, L. (2018). Electrochemical immunosensors – A powerful tool for analytical applications. Biosensors and Bioelectronics, 102, 470-478. doi:10.1016/j.bios.2017.11.029 |
es_ES |
dc.description.references |
Luppa, P. B., Sokoll, L. J., & Chan, D. W. (2001). Immunosensors—principles and applications to clinical chemistry. Clinica Chimica Acta, 314(1-2), 1-26. doi:10.1016/s0009-8981(01)00629-5 |
es_ES |
dc.description.references |
Lim, Y. C., Kouzani, A. Z., & Duan, W. (2010). Aptasensors: A Review. Journal of Biomedical Nanotechnology, 6(2), 93-105. doi:10.1166/jbn.2010.1103 |
es_ES |
dc.description.references |
Feng, C., Dai, S., & Wang, L. (2014). Optical aptasensors for quantitative detection of small biomolecules: A review. Biosensors and Bioelectronics, 59, 64-74. doi:10.1016/j.bios.2014.03.014 |
es_ES |
dc.description.references |
O’Sullivan, C. K. (2001). Aptasensors – the future of biosensing? Analytical and Bioanalytical Chemistry, 372(1), 44-48. doi:10.1007/s00216-001-1189-3 |
es_ES |
dc.description.references |
Leca‐Bouvier, B., & Blum, L. J. (2005). Biosensors for Protein Detection: A Review. Analytical Letters, 38(10), 1491-1517. doi:10.1081/al-200065780 |
es_ES |
dc.description.references |
Aznar, E., Oroval, M., Pascual, L., Murguía, J. R., Martínez-Máñez, R., & Sancenón, F. (2016). Gated Materials for On-Command Release of Guest Molecules. Chemical Reviews, 116(2), 561-718. doi:10.1021/acs.chemrev.5b00456 |
es_ES |
dc.description.references |
Sancenón, F., Pascual, L., Oroval, M., Aznar, E., & Martínez-Máñez, R. (2015). Gated Silica Mesoporous Materials in Sensing Applications. ChemistryOpen, 4(4), 418-437. doi:10.1002/open.201500053 |
es_ES |
dc.description.references |
Zelada-Guillén, G. A., Sebastián-Avila, J. L., Blondeau, P., Riu, J., & Rius, F. X. (2012). Label-free detection of Staphylococcus aureus in skin using real-time potentiometric biosensors based on carbon nanotubes and aptamers. Biosensors and Bioelectronics, 31(1), 226-232. doi:10.1016/j.bios.2011.10.021 |
es_ES |
dc.description.references |
Castillo, R. R., Baeza, A., & Vallet-Regí, M. (2017). Recent applications of the combination of mesoporous silica nanoparticles with nucleic acids: development of bioresponsive devices, carriers and sensors. Biomaterials Science, 5(3), 353-377. doi:10.1039/c6bm00872k |
es_ES |
dc.description.references |
Kurt, H., Yüce, M., Hussain, B., & Budak, H. (2016). Dual-excitation upconverting nanoparticle and quantum dot aptasensor for multiplexed food pathogen detection. Biosensors and Bioelectronics, 81, 280-286. doi:10.1016/j.bios.2016.03.005 |
es_ES |
dc.description.references |
Chang, Y.-C., Yang, C.-Y., Sun, R.-L., Cheng, Y.-F., Kao, W.-C., & Yang, P.-C. (2013). Rapid single cell detection of Staphylococcus aureus by aptamer-conjugated gold nanoparticles. Scientific Reports, 3(1). doi:10.1038/srep01863 |
es_ES |
dc.description.references |
Borsa, B. A., Tuna, B. G., Hernandez, F. J., Hernandez, L. I., Bayramoglu, G., Arica, M. Y., & Ozalp, V. C. (2016). Staphylococcus aureus detection in blood samples by silica nanoparticle-oligonucleotides conjugates. Biosensors and Bioelectronics, 86, 27-32. doi:10.1016/j.bios.2016.06.023 |
es_ES |
dc.description.references |
Otri, I., El Sayed, S., Medaglia, S., Martínez‐Máñez, R., Aznar, E., & Sancenón, F. (2019). Simple Endotoxin Detection Using Polymyxin‐B‐Gated Nanoparticles. Chemistry – A European Journal, 25(15), 3770-3774. doi:10.1002/chem.201806306 |
es_ES |
dc.description.references |
Pascual, L., Baroja, I., Aznar, E., Sancenón, F., Marcos, M. D., Murguía, J. R., … Martínez-Máñez, R. (2015). Oligonucleotide-capped mesoporous silica nanoparticles as DNA-responsive dye delivery systems for genomic DNA detection. Chemical Communications, 51(8), 1414-1416. doi:10.1039/c4cc08306g |
es_ES |
dc.description.references |
Ribes, À., Santiago-Felipe, S., Bernardos, A., Marcos, M. D., Pardo, T., Sancenón, F., … Aznar, E. (2017). Two New Fluorogenic Aptasensors Based on Capped Mesoporous Silica Nanoparticles to Detect Ochratoxin A. ChemistryOpen, 6(5), 653-659. doi:10.1002/open.201700106 |
es_ES |
dc.description.references |
Chen, Y., Santos, A., Wang, Y., Kumeria, T., Li, J., Wang, C., & Losic, D. (2015). Biomimetic Nanoporous Anodic Alumina Distributed Bragg Reflectors in the Form of Films and Microsized Particles for Sensing Applications. ACS Applied Materials & Interfaces, 7(35), 19816-19824. doi:10.1021/acsami.5b05904 |
es_ES |
dc.description.references |
De la Escosura-Muñiz, A., & Merkoçi, A. (2012). Nanochannels Preparation and Application in Biosensing. ACS Nano, 6(9), 7556-7583. doi:10.1021/nn301368z |
es_ES |
dc.description.references |
Baranowska, M., Slota, A. J., Eravuchira, P. J., Macias, G., Xifré-Pérez, E., Pallares, J., … Marsal, L. F. (2014). Protein attachment to nanoporous anodic alumina for biotechnological applications: Influence of pore size, protein size and functionalization path. Colloids and Surfaces B: Biointerfaces, 122, 375-383. doi:10.1016/j.colsurfb.2014.07.027 |
es_ES |
dc.description.references |
Ribes, À., Xifré -Pérez, E., Aznar, E., Sancenón, F., Pardo, T., Marsal, L. F., & Martínez-Máñez, R. (2016). Molecular gated nanoporous anodic alumina for the detection of cocaine. Scientific Reports, 6(1). doi:10.1038/srep38649 |
es_ES |
dc.description.references |
Pla, L., Xifré-Pérez, E., Ribes, À., Aznar, E., Marcos, M. D., Marsal, L. F., … Sancenón, F. (2017). A Mycoplasma
Genomic DNA Probe using Gated Nanoporous Anodic Alumina. ChemPlusChem, 82(3), 337-341. doi:10.1002/cplu.201600651 |
es_ES |
dc.description.references |
Ribes, À., Aznar, E., Santiago-Felipe, S., Xifre-Perez, E., Tormo-Mas, M. Á., Pemán, J., … Martínez-Máñez, R. (2019). Selective and Sensitive Probe Based in Oligonucleotide-Capped Nanoporous Alumina for the Rapid Screening of Infection Produced by Candida albicans. ACS Sensors, 4(5), 1291-1298. doi:10.1021/acssensors.9b00169 |
es_ES |
dc.description.references |
Kreiswirth, B. N., Löfdahl, S., Betley, M. J., O’Reilly, M., Schlievert, P. M., Bergdoll, M. S., & Novick, R. P. (1983). The toxic shock syndrome exotoxin structural gene is not detectably transmitted by a prophage. Nature, 305(5936), 709-712. doi:10.1038/305709a0 |
es_ES |
dc.description.references |
Christensen, G. D., Simpson, W. A., Bisno, A. L., & Beachey, E. H. (1982). Adherence of slime-producing strains of Staphylococcus epidermidis to smooth surfaces. Infection and Immunity, 37(1), 318-326. doi:10.1128/iai.37.1.318-326.1982 |
es_ES |
dc.description.references |
Wagner, E., Doskar, J., & Götz, F. (1998). Physical and genetic map of the genome of Staphylococcus carnosus TM300. Microbiology, 144(2), 509-517. doi:10.1099/00221287-144-2-509 |
es_ES |
dc.description.references |
Tormo, M. Á., Knecht, E., Götz, F., Lasa, I., & Penadés, J. R. (2005). Bap-dependent biofilm formation by pathogenic species of Staphylococcus: evidence of horizontal gene transfer? Microbiology, 151(7), 2465-2475. doi:10.1099/mic.0.27865-0 |
es_ES |
dc.description.references |
Oliveira, K., Procop, G. W., Wilson, D., Coull, J., & Stender, H. (2002). Rapid Identification of
Staphylococcus aureus
Directly from Blood Cultures by Fluorescence In Situ Hybridization with Peptide Nucleic Acid Probes. Journal of Clinical Microbiology, 40(1), 247-251. doi:10.1128/jcm.40.1.247-251.2002 |
es_ES |
dc.description.references |
Marlowe, E. M., & Bankowski, M. J. (2011). Conventional and Molecular Methods for the Detection of Methicillin-Resistant Staphylococcus aureus. Journal of Clinical Microbiology, 49(9_Supplement). doi:10.1128/jcm.00791-11 |
es_ES |
dc.description.references |
Huang, S.-H., & Chang, T.-C. (2004). Detection of Staphylococcus aureus by a Sensitive Immuno-PCR Assay. Clinical Chemistry, 50(9), 1673-1674. doi:10.1373/clinchem.2004.033548 |
es_ES |
dc.description.references |
Burghardt, E. L., Flenker, K. S., Clark, K. C., Miguel, J., Ince, D., Winokur, P., … McNamara, J. O. (2016). Rapid, Culture-Free Detection of Staphylococcus aureus Bacteremia. PLOS ONE, 11(6), e0157234. doi:10.1371/journal.pone.0157234 |
es_ES |