- -

Aptamer-Capped nanoporous anodic alumina for Staphylococcus aureus detection

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Aptamer-Capped nanoporous anodic alumina for Staphylococcus aureus detection

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Pla, Luis es_ES
dc.contributor.author Santiago Felipe, Sara es_ES
dc.contributor.author Tormo-Mas, María Ángeles es_ES
dc.contributor.author Pemán, Javier es_ES
dc.contributor.author Sancenón Galarza, Félix es_ES
dc.contributor.author Aznar, Elena es_ES
dc.contributor.author Martínez-Máñez, Ramón es_ES
dc.date.accessioned 2021-03-16T04:31:10Z
dc.date.available 2021-03-16T04:31:10Z
dc.date.issued 2020-10-01 es_ES
dc.identifier.issn 0925-4005 es_ES
dc.identifier.uri http://hdl.handle.net/10251/163876
dc.description.abstract [EN] The development of new detection systems for an accurate and rapid identification of pathogens has become an essential challenge in the biomedical field. Herein a highly selective platform based on aptamer-gated nano materials for specific Staphylococcus aureus detection is presented. In the proposed design, a nanoporous anodic alumina (NAA) scaffold is loaded with the fluorescent indicator rhodamine B, while pores entrances are capped by a DNA aptamer which selectively recognizes S. aureus cells in less than 1 h. When S. aureus cells are present, the solid is selectively uncapped, and the dye is released to the medium. This nanodevice allows the detection of bacterial concentrations between 2 and 5 CFU mL-1 (in buffer and blood, respectively) and it has demonstrated excellent behavior in terms of specificity and robustness. A set of 25 different clinical samples are analyzed using this simple procedure obtaining excellent results, which agree with conventional hospital reference techniques for the identification of S. aureus. This new method is sensitive, rapid and low cost, and avoids steps such as polymerase chain amplification reaction, which makes it suitable for use in point-of-care detection systems. es_ES
dc.description.sponsorship This study was supported by the Spanish Government (projects RTI2018-100910-B-C41 and SAF2017-82251-R (MCUI/AEI/FEDER, UE)), the Generalitat Valenciana (project PROMETEO/2018/024), the Universitat Politecnica de Valencia-Instituto de Investigacion Sanitaria La Fe (B02-MIRSA project) and CIBER-BBN (NANOPATH and valorization project CANDI-EYE). It has been also co-financed by the EU through the Valencian Community ERDF PO 2014-2020. S.S. thanks the Instituto de Salud Carlos III and the European Social Fund for the financial support "Sara Borrell" (CD16/000237). L.P. thanks to Ministerio de Economia, Industria y Competitividad for his FPI grant. The authors are grateful for the professional English language editing to Mr. Arash Javadinejad, English Instructor and pubication Editor at the Instituto de Investigacion Sanitaria La Fe, Valencia, Spain. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Sensors and Actuators B Chemical es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Aptamers es_ES
dc.subject Gated materials es_ES
dc.subject Staphylococcus aureus es_ES
dc.subject Optical sensors es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.subject.classification QUIMICA INORGANICA es_ES
dc.subject.classification QUIMICA ANALITICA es_ES
dc.title Aptamer-Capped nanoporous anodic alumina for Staphylococcus aureus detection es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.snb.2020.128281 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/SAF2017-82251-R/ES/NUEVAS ESTRATEGIAS DE PREVENCION Y DIAGNOSTICO DE LAS INFECCIONES RELACIONADAS CON DISPOSITIVOS BIOMEDICOS CAUSADOS POR STAPHYLOCOCCUS SPP/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/IISLAFE//B02-MIRSA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CD16%2F00237/ES/CD16%2F00237/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2018%2F024/ES/Sistemas avanzados de liberación controlada/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-100910-B-C41/ES/MATERIALES POROSOS INTELIGENTES MULTIFUNCIONALES Y DISPOSITIVOS ELECTRONICOS PARA LA LIBERACION DE FARMACOS, DETECCION DE DROGAS Y BIOMARCADORES Y COMUNICACION A NANOESCALA/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Pla, L.; Santiago Felipe, S.; Tormo-Mas, MÁ.; Pemán, J.; Sancenón Galarza, F.; Aznar, E.; Martínez-Máñez, R. (2020). Aptamer-Capped nanoporous anodic alumina for Staphylococcus aureus detection. Sensors and Actuators B Chemical. 320(128281). https://doi.org/10.1016/j.snb.2020.128281 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.snb.2020.128281 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 320 es_ES
dc.description.issue 128281 es_ES
dc.relation.pasarela S\418487 es_ES
dc.contributor.funder European Social Fund es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Instituto de Investigación Sanitaria La Fe es_ES
dc.contributor.funder Ministerio de Ciencia, Innovación y Universidades es_ES
dc.contributor.funder Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Lai, H.-Z., Wang, S.-G., Wu, C.-Y., & Chen, Y.-C. (2015). Detection of Staphylococcus aureus by Functional Gold Nanoparticle-Based Affinity Surface-Assisted Laser Desorption/Ionization Mass Spectrometry. Analytical Chemistry, 87(4), 2114-2120. doi:10.1021/ac503097v es_ES
dc.description.references Cheng, J.-C., Huang, C.-L., Lin, C.-C., Chen, C.-C., Chang, Y.-C., Chang, S.-S., & Tseng, C.-P. (2006). Rapid Detection and Identification of Clinically Important Bacteria by High-Resolution Melting Analysis after Broad-Range Ribosomal RNA Real-Time PCR. Clinical Chemistry, 52(11), 1997-2004. doi:10.1373/clinchem.2006.069286 es_ES
dc.description.references Moore, D. F., & Curry, J. I. (1998). Detection and Identification of Mycobacterium tuberculosis Directly from Sputum Sediments by Ligase Chain Reaction. Journal of Clinical Microbiology, 36(4), 1028-1031. doi:10.1128/jcm.36.4.1028-1031.1998 es_ES
dc.description.references CHANG, T. C., & HUANG, S. H. (1994). An Enzyme-Linked Immunosorbent Assay for the Rapid Detection of Staphylococcus aureus in Processed Foods. Journal of Food Protection, 57(3), 184-189. doi:10.4315/0362-028x-57.3.184 es_ES
dc.description.references Vigneshvar, S., Sudhakumari, C. C., Senthilkumaran, B., & Prakash, H. (2016). Recent Advances in Biosensor Technology for Potential Applications – An Overview. Frontiers in Bioengineering and Biotechnology, 4. doi:10.3389/fbioe.2016.00011 es_ES
dc.description.references Abbaspour, A., Norouz-Sarvestani, F., Noori, A., & Soltani, N. (2015). Aptamer-conjugated silver nanoparticles for electrochemical dual-aptamer-based sandwich detection of staphylococcus aureus. Biosensors and Bioelectronics, 68, 149-155. doi:10.1016/j.bios.2014.12.040 es_ES
dc.description.references Wang, J., Wu, X., Wang, C., Shao, N., Dong, P., Xiao, R., & Wang, S. (2015). Magnetically Assisted Surface-Enhanced Raman Spectroscopy for the Detection of Staphylococcus aureus Based on Aptamer Recognition. ACS Applied Materials & Interfaces, 7(37), 20919-20929. doi:10.1021/acsami.5b06446 es_ES
dc.description.references Felix, F. S., & Angnes, L. (2018). Electrochemical immunosensors – A powerful tool for analytical applications. Biosensors and Bioelectronics, 102, 470-478. doi:10.1016/j.bios.2017.11.029 es_ES
dc.description.references Luppa, P. B., Sokoll, L. J., & Chan, D. W. (2001). Immunosensors—principles and applications to clinical chemistry. Clinica Chimica Acta, 314(1-2), 1-26. doi:10.1016/s0009-8981(01)00629-5 es_ES
dc.description.references Lim, Y. C., Kouzani, A. Z., & Duan, W. (2010). Aptasensors: A Review. Journal of Biomedical Nanotechnology, 6(2), 93-105. doi:10.1166/jbn.2010.1103 es_ES
dc.description.references Feng, C., Dai, S., & Wang, L. (2014). Optical aptasensors for quantitative detection of small biomolecules: A review. Biosensors and Bioelectronics, 59, 64-74. doi:10.1016/j.bios.2014.03.014 es_ES
dc.description.references O’Sullivan, C. K. (2001). Aptasensors – the future of biosensing? Analytical and Bioanalytical Chemistry, 372(1), 44-48. doi:10.1007/s00216-001-1189-3 es_ES
dc.description.references Leca‐Bouvier, B., & Blum, L. J. (2005). Biosensors for Protein Detection: A Review. Analytical Letters, 38(10), 1491-1517. doi:10.1081/al-200065780 es_ES
dc.description.references Aznar, E., Oroval, M., Pascual, L., Murguía, J. R., Martínez-Máñez, R., & Sancenón, F. (2016). Gated Materials for On-Command Release of Guest Molecules. Chemical Reviews, 116(2), 561-718. doi:10.1021/acs.chemrev.5b00456 es_ES
dc.description.references Sancenón, F., Pascual, L., Oroval, M., Aznar, E., & Martínez-Máñez, R. (2015). Gated Silica Mesoporous Materials in Sensing Applications. ChemistryOpen, 4(4), 418-437. doi:10.1002/open.201500053 es_ES
dc.description.references Zelada-Guillén, G. A., Sebastián-Avila, J. L., Blondeau, P., Riu, J., & Rius, F. X. (2012). Label-free detection of Staphylococcus aureus in skin using real-time potentiometric biosensors based on carbon nanotubes and aptamers. Biosensors and Bioelectronics, 31(1), 226-232. doi:10.1016/j.bios.2011.10.021 es_ES
dc.description.references Castillo, R. R., Baeza, A., & Vallet-Regí, M. (2017). Recent applications of the combination of mesoporous silica nanoparticles with nucleic acids: development of bioresponsive devices, carriers and sensors. Biomaterials Science, 5(3), 353-377. doi:10.1039/c6bm00872k es_ES
dc.description.references Kurt, H., Yüce, M., Hussain, B., & Budak, H. (2016). Dual-excitation upconverting nanoparticle and quantum dot aptasensor for multiplexed food pathogen detection. Biosensors and Bioelectronics, 81, 280-286. doi:10.1016/j.bios.2016.03.005 es_ES
dc.description.references Chang, Y.-C., Yang, C.-Y., Sun, R.-L., Cheng, Y.-F., Kao, W.-C., & Yang, P.-C. (2013). Rapid single cell detection of Staphylococcus aureus by aptamer-conjugated gold nanoparticles. Scientific Reports, 3(1). doi:10.1038/srep01863 es_ES
dc.description.references Borsa, B. A., Tuna, B. G., Hernandez, F. J., Hernandez, L. I., Bayramoglu, G., Arica, M. Y., & Ozalp, V. C. (2016). Staphylococcus aureus detection in blood samples by silica nanoparticle-oligonucleotides conjugates. Biosensors and Bioelectronics, 86, 27-32. doi:10.1016/j.bios.2016.06.023 es_ES
dc.description.references Otri, I., El Sayed, S., Medaglia, S., Martínez‐Máñez, R., Aznar, E., & Sancenón, F. (2019). Simple Endotoxin Detection Using Polymyxin‐B‐Gated Nanoparticles. Chemistry – A European Journal, 25(15), 3770-3774. doi:10.1002/chem.201806306 es_ES
dc.description.references Pascual, L., Baroja, I., Aznar, E., Sancenón, F., Marcos, M. D., Murguía, J. R., … Martínez-Máñez, R. (2015). Oligonucleotide-capped mesoporous silica nanoparticles as DNA-responsive dye delivery systems for genomic DNA detection. Chemical Communications, 51(8), 1414-1416. doi:10.1039/c4cc08306g es_ES
dc.description.references Ribes, À., Santiago-Felipe, S., Bernardos, A., Marcos, M. D., Pardo, T., Sancenón, F., … Aznar, E. (2017). Two New Fluorogenic Aptasensors Based on Capped Mesoporous Silica Nanoparticles to Detect Ochratoxin A. ChemistryOpen, 6(5), 653-659. doi:10.1002/open.201700106 es_ES
dc.description.references Chen, Y., Santos, A., Wang, Y., Kumeria, T., Li, J., Wang, C., & Losic, D. (2015). Biomimetic Nanoporous Anodic Alumina Distributed Bragg Reflectors in the Form of Films and Microsized Particles for Sensing Applications. ACS Applied Materials & Interfaces, 7(35), 19816-19824. doi:10.1021/acsami.5b05904 es_ES
dc.description.references De la Escosura-Muñiz, A., & Merkoçi, A. (2012). Nanochannels Preparation and Application in Biosensing. ACS Nano, 6(9), 7556-7583. doi:10.1021/nn301368z es_ES
dc.description.references Baranowska, M., Slota, A. J., Eravuchira, P. J., Macias, G., Xifré-Pérez, E., Pallares, J., … Marsal, L. F. (2014). Protein attachment to nanoporous anodic alumina for biotechnological applications: Influence of pore size, protein size and functionalization path. Colloids and Surfaces B: Biointerfaces, 122, 375-383. doi:10.1016/j.colsurfb.2014.07.027 es_ES
dc.description.references Ribes, À., Xifré -Pérez, E., Aznar, E., Sancenón, F., Pardo, T., Marsal, L. F., & Martínez-Máñez, R. (2016). Molecular gated nanoporous anodic alumina for the detection of cocaine. Scientific Reports, 6(1). doi:10.1038/srep38649 es_ES
dc.description.references Pla, L., Xifré-Pérez, E., Ribes, À., Aznar, E., Marcos, M. D., Marsal, L. F., … Sancenón, F. (2017). A Mycoplasma Genomic DNA Probe using Gated Nanoporous Anodic Alumina. ChemPlusChem, 82(3), 337-341. doi:10.1002/cplu.201600651 es_ES
dc.description.references Ribes, À., Aznar, E., Santiago-Felipe, S., Xifre-Perez, E., Tormo-Mas, M. Á., Pemán, J., … Martínez-Máñez, R. (2019). Selective and Sensitive Probe Based in Oligonucleotide-Capped Nanoporous Alumina for the Rapid Screening of Infection Produced by Candida albicans. ACS Sensors, 4(5), 1291-1298. doi:10.1021/acssensors.9b00169 es_ES
dc.description.references Kreiswirth, B. N., Löfdahl, S., Betley, M. J., O’Reilly, M., Schlievert, P. M., Bergdoll, M. S., & Novick, R. P. (1983). The toxic shock syndrome exotoxin structural gene is not detectably transmitted by a prophage. Nature, 305(5936), 709-712. doi:10.1038/305709a0 es_ES
dc.description.references Christensen, G. D., Simpson, W. A., Bisno, A. L., & Beachey, E. H. (1982). Adherence of slime-producing strains of Staphylococcus epidermidis to smooth surfaces. Infection and Immunity, 37(1), 318-326. doi:10.1128/iai.37.1.318-326.1982 es_ES
dc.description.references Wagner, E., Doskar, J., & Götz, F. (1998). Physical and genetic map of the genome of Staphylococcus carnosus TM300. Microbiology, 144(2), 509-517. doi:10.1099/00221287-144-2-509 es_ES
dc.description.references Tormo, M. Á., Knecht, E., Götz, F., Lasa, I., & Penadés, J. R. (2005). Bap-dependent biofilm formation by pathogenic species of Staphylococcus: evidence of horizontal gene transfer? Microbiology, 151(7), 2465-2475. doi:10.1099/mic.0.27865-0 es_ES
dc.description.references Oliveira, K., Procop, G. W., Wilson, D., Coull, J., & Stender, H. (2002). Rapid Identification of Staphylococcus aureus Directly from Blood Cultures by Fluorescence In Situ Hybridization with Peptide Nucleic Acid Probes. Journal of Clinical Microbiology, 40(1), 247-251. doi:10.1128/jcm.40.1.247-251.2002 es_ES
dc.description.references Marlowe, E. M., & Bankowski, M. J. (2011). Conventional and Molecular Methods for the Detection of Methicillin-Resistant Staphylococcus aureus. Journal of Clinical Microbiology, 49(9_Supplement). doi:10.1128/jcm.00791-11 es_ES
dc.description.references Huang, S.-H., & Chang, T.-C. (2004). Detection of Staphylococcus aureus by a Sensitive Immuno-PCR Assay. Clinical Chemistry, 50(9), 1673-1674. doi:10.1373/clinchem.2004.033548 es_ES
dc.description.references Burghardt, E. L., Flenker, K. S., Clark, K. C., Miguel, J., Ince, D., Winokur, P., … McNamara, J. O. (2016). Rapid, Culture-Free Detection of Staphylococcus aureus Bacteremia. PLOS ONE, 11(6), e0157234. doi:10.1371/journal.pone.0157234 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem