- -

Computation of scattering resonances in absorptive and dispersive media with applications to metal-dielectric nano-structures

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Computation of scattering resonances in absorptive and dispersive media with applications to metal-dielectric nano-structures

Show full item record

Araujo C., JC.; Campos, C.; Engstrom, C.; Roman, JE. (2020). Computation of scattering resonances in absorptive and dispersive media with applications to metal-dielectric nano-structures. Journal of Computational Physics. 407:1-24. https://doi.org/10.1016/j.jcp.2019.109220

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/163977

Files in this item

Item Metadata

Title: Computation of scattering resonances in absorptive and dispersive media with applications to metal-dielectric nano-structures
Author: Araujo C., Juan C. Campos, Carmen Engstrom, Christian Roman, Jose E.
UPV Unit: Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació
Issued date:
Abstract:
[EN] In this paper we consider scattering resonance computations in optics when the resonators consist of frequency dependent and lossy materials, such as metals at optical frequencies. The proposed computational approach ...[+]
Subjects: Plasmon resonance , Resonance modes , Nonlinear eigenvalue problems , Helmholtz problem , PML , Dispersion analysis , Leaky modes , Resonant states , Quasimodes , Quasi-normal modes
Copyrigths: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Source:
Journal of Computational Physics. (issn: 0021-9991 )
DOI: 10.1016/j.jcp.2019.109220
Publisher:
Elsevier
Publisher version: https://doi.org/10.1016/j.jcp.2019.109220
Project ID:
info:eu-repo/grantAgreement/MINECO//TIN2016-75985-P/ES/SOLVERS DE VALORES PROPIOS ALTAMENTE ESCALABLES EN EL CONTEXTO DE LA BIBLIOTECA SLEPC/
info:eu-repo/grantAgreement/VR//621-2012-3863/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-107379RB-I00/ES/ALGORITMOS PARALELOS Y SOFTWARE PARA METODOS ALGEBRAICOS EN ANALISIS DE DATOS/
Thanks:
Juan C. Araujo and Christian Engstrom gratefully acknowledge the support of the Swedish Research Council under Grant No. 621-2012-3863. Carmen Campos and Jose E. Roman were supported by the Spanish Agencia Estatal de ...[+]
Type: Artículo

References

Schuller, J. A., Barnard, E. S., Cai, W., Jun, Y. C., White, J. S., & Brongersma, M. L. (2010). Plasmonics for extreme light concentration and manipulation. Nature Materials, 9(3), 193-204. doi:10.1038/nmat2630

Jørgensen, J. T., Norregaard, K., Tian, P., Bendix, P. M., Kjaer, A., & Oddershede, L. B. (2016). Single Particle and PET-based Platform for Identifying Optimal Plasmonic Nano-Heaters for Photothermal Cancer Therapy. Scientific Reports, 6(1). doi:10.1038/srep30076

Engström, C., & Torshage, A. (2018). Accumulation of complex eigenvalues of a class of analytic operator functions. Journal of Functional Analysis, 275(2), 442-477. doi:10.1016/j.jfa.2018.03.019 [+]
Schuller, J. A., Barnard, E. S., Cai, W., Jun, Y. C., White, J. S., & Brongersma, M. L. (2010). Plasmonics for extreme light concentration and manipulation. Nature Materials, 9(3), 193-204. doi:10.1038/nmat2630

Jørgensen, J. T., Norregaard, K., Tian, P., Bendix, P. M., Kjaer, A., & Oddershede, L. B. (2016). Single Particle and PET-based Platform for Identifying Optimal Plasmonic Nano-Heaters for Photothermal Cancer Therapy. Scientific Reports, 6(1). doi:10.1038/srep30076

Engström, C., & Torshage, A. (2018). Accumulation of complex eigenvalues of a class of analytic operator functions. Journal of Functional Analysis, 275(2), 442-477. doi:10.1016/j.jfa.2018.03.019

Lesina, A. C., Vaccari, A., Berini, P., & Ramunno, L. (2015). On the convergence and accuracy of the FDTD method for nanoplasmonics. Optics Express, 23(8), 10481. doi:10.1364/oe.23.010481

Lenoir, M., Vullierme-Ledard, M., & Hazard, C. (1992). Variational Formulations for the Determination of Resonant States in Scattering Problems. SIAM Journal on Mathematical Analysis, 23(3), 579-608. doi:10.1137/0523030

Araujo-Cabarcas, J. C., Engström, C., & Jarlebring, E. (2018). Efficient resonance computations for Helmholtz problems based on a Dirichlet-to-Neumann map. Journal of Computational and Applied Mathematics, 330, 177-192. doi:10.1016/j.cam.2017.08.012

Kim, S., & Pasciak, J. E. (2009). The computation of resonances in open systems using a perfectly matched layer. Mathematics of Computation, 78(267), 1375-1398. doi:10.1090/s0025-5718-09-02227-3

Gopalakrishnan, J., Moskow, S., & Santosa, F. (2008). Asymptotic and Numerical Techniques for Resonances of Thin Photonic Structures. SIAM Journal on Applied Mathematics, 69(1), 37-63. doi:10.1137/070701388

Berenger, J.-P. (1994). A perfectly matched layer for the absorption of electromagnetic waves. Journal of Computational Physics, 114(2), 185-200. doi:10.1006/jcph.1994.1159

Araujo-Cabarcas, J. C., & Engström, C. (2017). On spurious solutions in finite element approximations of resonances in open systems. Computers & Mathematics with Applications, 74(10), 2385-2402. doi:10.1016/j.camwa.2017.07.020

Kressner, D. (2009). A block Newton method for nonlinear eigenvalue problems. Numerische Mathematik, 114(2), 355-372. doi:10.1007/s00211-009-0259-x

Jarlebring, E., Michiels, W., & Meerbergen, K. (2012). A linear eigenvalue algorithm for the nonlinear eigenvalue problem. Numerische Mathematik, 122(1), 169-195. doi:10.1007/s00211-012-0453-0

Güttel, S., & Tisseur, F. (2017). The nonlinear eigenvalue problem. Acta Numerica, 26, 1-94. doi:10.1017/s0962492917000034

Hernandez, V., Roman, J. E., & Vidal, V. (2005). SLEPc. ACM Transactions on Mathematical Software, 31(3), 351-362. doi:10.1145/1089014.1089019

Schenk, F. (2011). Optimization of resonances for multilayer x-ray resonators. Göttingen Series in x-ray Physics. doi:10.17875/gup2011-75

Lassas, M., & Somersalo, E. (1998). On the existence and convergence of the solution of PML equations. Computing, 60(3), 229-241. doi:10.1007/bf02684334

Ihlenburg, F. (Ed.). (1998). Finite Element Analysis of Acoustic Scattering. Applied Mathematical Sciences. doi:10.1007/b98828

Thompson, L. L., & Pinsky, P. M. (1994). Complex wavenumber Fourier analysis of the p-version finite element method. Computational Mechanics, 13(4), 255-275. doi:10.1007/bf00350228

Ainsworth, M. (2004). Discrete Dispersion Relation for hp-Version Finite Element Approximation at High Wave Number. SIAM Journal on Numerical Analysis, 42(2), 553-575. doi:10.1137/s0036142903423460

Dörfler, W., & Sauter, S. (2013). A Posteriori Error Estimation for Highly Indefinite Helmholtz Problems. Computational Methods in Applied Mathematics, 13(3), 333-347. doi:10.1515/cmam-2013-0008

Sauter, S. (2010). $hp$-Finite Elements for Elliptic Eigenvalue Problems: Error Estimates Which Are Explicit with Respect to $\lambda$, h, and p. SIAM Journal on Numerical Analysis, 48(1), 95-108. doi:10.1137/070702515

Giani, S., Grubišić, L., Międlar, A., & Ovall, J. S. (2015). Robust error estimates for approximations of non-self-adjoint eigenvalue problems. Numerische Mathematik, 133(3), 471-495. doi:10.1007/s00211-015-0752-3

Engström, C., Giani, S., & Grubišić, L. (2016). Efficient and reliable hp-FEM estimates for quadratic eigenvalue problems and photonic crystal applications. Computers & Mathematics with Applications, 72(4), 952-973. doi:10.1016/j.camwa.2016.06.001

NIST Digital Library of Mathematical Functions, http://dlmf.nist.gov/, release 1.0.20 of 2018-09-15. F, in: W.J. Olver, A.B. Olde Daalhuis, D.W. Lozier, B.I. Schneider, R.F. Boisvert, C.W. Clark, B.R. Miller, B.V. Saunders (Eds.).

Olver, F. W. J. (1952). Some new asymptotic expansions for Bessel functions of large orders. Mathematical Proceedings of the Cambridge Philosophical Society, 48(3), 414-427. doi:10.1017/s030500410002781x

Ainsworth, M. (2004). Dispersive properties of high–order Nédélec/edge element approximation of the time–harmonic Maxwell equations. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 362(1816), 471-491. doi:10.1098/rsta.2003.1331

Babuška, I., & Guo, B. Q. (1992). The h, p and h-p version of the finite element method; basis theory and applications. Advances in Engineering Software, 15(3-4), 159-174. doi:10.1016/0965-9978(92)90097-y

Bangerth, W., & Kayser-Herold, O. (2009). Data structures and requirements for hp finite element software. ACM Transactions on Mathematical Software, 36(1), 1-31. doi:10.1145/1486525.1486529

C. Campos, J.E. Roman, NEP: a module for the parallel solution of nonlinear eigenvalue problems in SLEPc, submitted for publication, 2019.

Güttel, S., Van Beeumen, R., Meerbergen, K., & Michiels, W. (2014). NLEIGS: A Class of Fully Rational Krylov Methods for Nonlinear Eigenvalue Problems. SIAM Journal on Scientific Computing, 36(6), A2842-A2864. doi:10.1137/130935045

Stewart, G. W. (2002). A Krylov--Schur Algorithm for Large Eigenproblems. SIAM Journal on Matrix Analysis and Applications, 23(3), 601-614. doi:10.1137/s0895479800371529

Campos, C., & Roman, J. E. (2016). Parallel Krylov Solvers for the Polynomial Eigenvalue Problem in SLEPc. SIAM Journal on Scientific Computing, 38(5), S385-S411. doi:10.1137/15m1022458

Rakić, A. D., Djurišić, A. B., Elazar, J. M., & Majewski, M. L. (1998). Optical properties of metallic films for vertical-cavity optoelectronic devices. Applied Optics, 37(22), 5271. doi:10.1364/ao.37.005271

Yau, L., & Ben-Israel, A. (1998). The Newton and Halley Methods for Complex Roots. The American Mathematical Monthly, 105(9), 806-818. doi:10.1080/00029890.1998.12004968

Johnson, B. R. (1993). Theory of morphology-dependent resonances: shape resonances and width formulas. Journal of the Optical Society of America A, 10(2), 343. doi:10.1364/josaa.10.000343

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record