- -

Computation of scattering resonances in absorptive and dispersive media with applications to metal-dielectric nano-structures

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Computation of scattering resonances in absorptive and dispersive media with applications to metal-dielectric nano-structures

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Araujo C., Juan C. es_ES
dc.contributor.author Campos, Carmen es_ES
dc.contributor.author Engstrom, Christian es_ES
dc.contributor.author Roman, Jose E. es_ES
dc.date.accessioned 2021-03-17T04:31:47Z
dc.date.available 2021-03-17T04:31:47Z
dc.date.issued 2020-04-15 es_ES
dc.identifier.issn 0021-9991 es_ES
dc.identifier.uri http://hdl.handle.net/10251/163977
dc.description.abstract [EN] In this paper we consider scattering resonance computations in optics when the resonators consist of frequency dependent and lossy materials, such as metals at optical frequencies. The proposed computational approach combines a novel hp-FEM strategy, based on dispersion analysis for complex frequencies, with a fast implementation of the nonlinear eigenvalue solver NLEIGS. Numerical computations illustrate that the pre-asymptotic phase is significantly reduced compared to standard uniform h and p strategies. Moreover, the efficiency grows with the refractive index contrast, which makes the new strategy highly attractive for metal-dielectric structures. The hp-refinement strategy together with the efficient parallel code result in highly accurate approximations and short runtimes on multi processor platforms. (C) 2019 Elsevier Inc. All rights reserved. es_ES
dc.description.sponsorship Juan C. Araujo and Christian Engstrom gratefully acknowledge the support of the Swedish Research Council under Grant No. 621-2012-3863. Carmen Campos and Jose E. Roman were supported by the Spanish Agencia Estatal de Investigacion (AEI) under project SLEPc-HS (TIN2016-75985-P), which includes European Commission ERDF funds. The supercomputer Tirant 3 used in some of the computational experiments belongs to Universitat de Valencia. Juan C. Araujo acknowledges Andree Falgin Hultgren, for his contributions on the meshing routine. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Journal of Computational Physics es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Plasmon resonance es_ES
dc.subject Resonance modes es_ES
dc.subject Nonlinear eigenvalue problems es_ES
dc.subject Helmholtz problem es_ES
dc.subject PML es_ES
dc.subject Dispersion analysis es_ES
dc.subject Leaky modes es_ES
dc.subject Resonant states es_ES
dc.subject Quasimodes es_ES
dc.subject Quasi-normal modes es_ES
dc.subject.classification CIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL es_ES
dc.title Computation of scattering resonances in absorptive and dispersive media with applications to metal-dielectric nano-structures es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.jcp.2019.109220 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TIN2016-75985-P/ES/SOLVERS DE VALORES PROPIOS ALTAMENTE ESCALABLES EN EL CONTEXTO DE LA BIBLIOTECA SLEPC/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/VR//621-2012-3863/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-107379RB-I00/ES/ALGORITMOS PARALELOS Y SOFTWARE PARA METODOS ALGEBRAICOS EN ANALISIS DE DATOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.description.bibliographicCitation Araujo C., JC.; Campos, C.; Engstrom, C.; Roman, JE. (2020). Computation of scattering resonances in absorptive and dispersive media with applications to metal-dielectric nano-structures. Journal of Computational Physics. 407:1-24. https://doi.org/10.1016/j.jcp.2019.109220 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.jcp.2019.109220 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 24 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 407 es_ES
dc.relation.pasarela S\425588 es_ES
dc.contributor.funder Swedish Research Council es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Schuller, J. A., Barnard, E. S., Cai, W., Jun, Y. C., White, J. S., & Brongersma, M. L. (2010). Plasmonics for extreme light concentration and manipulation. Nature Materials, 9(3), 193-204. doi:10.1038/nmat2630 es_ES
dc.description.references Jørgensen, J. T., Norregaard, K., Tian, P., Bendix, P. M., Kjaer, A., & Oddershede, L. B. (2016). Single Particle and PET-based Platform for Identifying Optimal Plasmonic Nano-Heaters for Photothermal Cancer Therapy. Scientific Reports, 6(1). doi:10.1038/srep30076 es_ES
dc.description.references Engström, C., & Torshage, A. (2018). Accumulation of complex eigenvalues of a class of analytic operator functions. Journal of Functional Analysis, 275(2), 442-477. doi:10.1016/j.jfa.2018.03.019 es_ES
dc.description.references Lesina, A. C., Vaccari, A., Berini, P., & Ramunno, L. (2015). On the convergence and accuracy of the FDTD method for nanoplasmonics. Optics Express, 23(8), 10481. doi:10.1364/oe.23.010481 es_ES
dc.description.references Lenoir, M., Vullierme-Ledard, M., & Hazard, C. (1992). Variational Formulations for the Determination of Resonant States in Scattering Problems. SIAM Journal on Mathematical Analysis, 23(3), 579-608. doi:10.1137/0523030 es_ES
dc.description.references Araujo-Cabarcas, J. C., Engström, C., & Jarlebring, E. (2018). Efficient resonance computations for Helmholtz problems based on a Dirichlet-to-Neumann map. Journal of Computational and Applied Mathematics, 330, 177-192. doi:10.1016/j.cam.2017.08.012 es_ES
dc.description.references Kim, S., & Pasciak, J. E. (2009). The computation of resonances in open systems using a perfectly matched layer. Mathematics of Computation, 78(267), 1375-1398. doi:10.1090/s0025-5718-09-02227-3 es_ES
dc.description.references Gopalakrishnan, J., Moskow, S., & Santosa, F. (2008). Asymptotic and Numerical Techniques for Resonances of Thin Photonic Structures. SIAM Journal on Applied Mathematics, 69(1), 37-63. doi:10.1137/070701388 es_ES
dc.description.references Berenger, J.-P. (1994). A perfectly matched layer for the absorption of electromagnetic waves. Journal of Computational Physics, 114(2), 185-200. doi:10.1006/jcph.1994.1159 es_ES
dc.description.references Araujo-Cabarcas, J. C., & Engström, C. (2017). On spurious solutions in finite element approximations of resonances in open systems. Computers & Mathematics with Applications, 74(10), 2385-2402. doi:10.1016/j.camwa.2017.07.020 es_ES
dc.description.references Kressner, D. (2009). A block Newton method for nonlinear eigenvalue problems. Numerische Mathematik, 114(2), 355-372. doi:10.1007/s00211-009-0259-x es_ES
dc.description.references Jarlebring, E., Michiels, W., & Meerbergen, K. (2012). A linear eigenvalue algorithm for the nonlinear eigenvalue problem. Numerische Mathematik, 122(1), 169-195. doi:10.1007/s00211-012-0453-0 es_ES
dc.description.references Güttel, S., & Tisseur, F. (2017). The nonlinear eigenvalue problem. Acta Numerica, 26, 1-94. doi:10.1017/s0962492917000034 es_ES
dc.description.references Hernandez, V., Roman, J. E., & Vidal, V. (2005). SLEPc. ACM Transactions on Mathematical Software, 31(3), 351-362. doi:10.1145/1089014.1089019 es_ES
dc.description.references Schenk, F. (2011). Optimization of resonances for multilayer x-ray resonators. Göttingen Series in x-ray Physics. doi:10.17875/gup2011-75 es_ES
dc.description.references Lassas, M., & Somersalo, E. (1998). On the existence and convergence of the solution of PML equations. Computing, 60(3), 229-241. doi:10.1007/bf02684334 es_ES
dc.description.references Ihlenburg, F. (Ed.). (1998). Finite Element Analysis of Acoustic Scattering. Applied Mathematical Sciences. doi:10.1007/b98828 es_ES
dc.description.references Thompson, L. L., & Pinsky, P. M. (1994). Complex wavenumber Fourier analysis of the p-version finite element method. Computational Mechanics, 13(4), 255-275. doi:10.1007/bf00350228 es_ES
dc.description.references Ainsworth, M. (2004). Discrete Dispersion Relation for hp-Version Finite Element Approximation at High Wave Number. SIAM Journal on Numerical Analysis, 42(2), 553-575. doi:10.1137/s0036142903423460 es_ES
dc.description.references Dörfler, W., & Sauter, S. (2013). A Posteriori Error Estimation for Highly Indefinite Helmholtz Problems. Computational Methods in Applied Mathematics, 13(3), 333-347. doi:10.1515/cmam-2013-0008 es_ES
dc.description.references Sauter, S. (2010). $hp$-Finite Elements for Elliptic Eigenvalue Problems: Error Estimates Which Are Explicit with Respect to $\lambda$, h, and p. SIAM Journal on Numerical Analysis, 48(1), 95-108. doi:10.1137/070702515 es_ES
dc.description.references Giani, S., Grubišić, L., Międlar, A., & Ovall, J. S. (2015). Robust error estimates for approximations of non-self-adjoint eigenvalue problems. Numerische Mathematik, 133(3), 471-495. doi:10.1007/s00211-015-0752-3 es_ES
dc.description.references Engström, C., Giani, S., & Grubišić, L. (2016). Efficient and reliable hp-FEM estimates for quadratic eigenvalue problems and photonic crystal applications. Computers & Mathematics with Applications, 72(4), 952-973. doi:10.1016/j.camwa.2016.06.001 es_ES
dc.description.references NIST Digital Library of Mathematical Functions, http://dlmf.nist.gov/, release 1.0.20 of 2018-09-15. F, in: W.J. Olver, A.B. Olde Daalhuis, D.W. Lozier, B.I. Schneider, R.F. Boisvert, C.W. Clark, B.R. Miller, B.V. Saunders (Eds.). es_ES
dc.description.references Olver, F. W. J. (1952). Some new asymptotic expansions for Bessel functions of large orders. Mathematical Proceedings of the Cambridge Philosophical Society, 48(3), 414-427. doi:10.1017/s030500410002781x es_ES
dc.description.references Ainsworth, M. (2004). Dispersive properties of high–order Nédélec/edge element approximation of the time–harmonic Maxwell equations. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 362(1816), 471-491. doi:10.1098/rsta.2003.1331 es_ES
dc.description.references Babuška, I., & Guo, B. Q. (1992). The h, p and h-p version of the finite element method; basis theory and applications. Advances in Engineering Software, 15(3-4), 159-174. doi:10.1016/0965-9978(92)90097-y es_ES
dc.description.references Bangerth, W., & Kayser-Herold, O. (2009). Data structures and requirements for hp finite element software. ACM Transactions on Mathematical Software, 36(1), 1-31. doi:10.1145/1486525.1486529 es_ES
dc.description.references C. Campos, J.E. Roman, NEP: a module for the parallel solution of nonlinear eigenvalue problems in SLEPc, submitted for publication, 2019. es_ES
dc.description.references Güttel, S., Van Beeumen, R., Meerbergen, K., & Michiels, W. (2014). NLEIGS: A Class of Fully Rational Krylov Methods for Nonlinear Eigenvalue Problems. SIAM Journal on Scientific Computing, 36(6), A2842-A2864. doi:10.1137/130935045 es_ES
dc.description.references Stewart, G. W. (2002). A Krylov--Schur Algorithm for Large Eigenproblems. SIAM Journal on Matrix Analysis and Applications, 23(3), 601-614. doi:10.1137/s0895479800371529 es_ES
dc.description.references Campos, C., & Roman, J. E. (2016). Parallel Krylov Solvers for the Polynomial Eigenvalue Problem in SLEPc. SIAM Journal on Scientific Computing, 38(5), S385-S411. doi:10.1137/15m1022458 es_ES
dc.description.references Rakić, A. D., Djurišić, A. B., Elazar, J. M., & Majewski, M. L. (1998). Optical properties of metallic films for vertical-cavity optoelectronic devices. Applied Optics, 37(22), 5271. doi:10.1364/ao.37.005271 es_ES
dc.description.references Yau, L., & Ben-Israel, A. (1998). The Newton and Halley Methods for Complex Roots. The American Mathematical Monthly, 105(9), 806-818. doi:10.1080/00029890.1998.12004968 es_ES
dc.description.references Johnson, B. R. (1993). Theory of morphology-dependent resonances: shape resonances and width formulas. Journal of the Optical Society of America A, 10(2), 343. doi:10.1364/josaa.10.000343 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem