- -

Analysis of incidence of air quality on human health: a case study on the relationship between pollutant concentrations and respiratory diseases in Kennedy, Bogotá

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Analysis of incidence of air quality on human health: a case study on the relationship between pollutant concentrations and respiratory diseases in Kennedy, Bogotá

Show full item record

Molina-Gomez, NI.; Calderón-Rivera, DS.; Sierra-Parada, R.; Díaz Arévalo, JL.; López Jiménez, PA. (2021). Analysis of incidence of air quality on human health: a case study on the relationship between pollutant concentrations and respiratory diseases in Kennedy, Bogotá. International Journal of Biometeorology. 65(1):119-132. https://doi.org/10.1007/s00484-020-01955-4

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/163978

Files in this item

Item Metadata

Title: Analysis of incidence of air quality on human health: a case study on the relationship between pollutant concentrations and respiratory diseases in Kennedy, Bogotá
Author: Molina-Gomez, Nidia Isabel Calderón-Rivera, Dayam Soret Sierra-Parada, Ronal Díaz Arévalo, Jose Luis López Jiménez, Petra Amparo
UPV Unit: Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient
Issued date:
Abstract:
[EN] Thousands of deaths associated with air pollution each year could be prevented by forecasting the behavior of factors that pose risks to people's health and their geographical distribution. Proximity to pollution ...[+]
Subjects: Geostatistics , Machine learning , Sustainable development , Air quality , Hot spots
Copyrigths: Reserva de todos los derechos
Source:
International Journal of Biometeorology. (issn: 0020-7128 )
DOI: 10.1007/s00484-020-01955-4
Publisher:
Springer-Verlag
Publisher version: https://doi.org/10.1007/s00484-020-01955-4
Thanks:
Many thanks to the members of the Intelligence and Territorial Analysis Group of the Universidad Santo Tomás for their collaboration in conducting the fieldwork.
Type: Artículo

References

Altman DG, Bland JM (1994) Diagnostic tests 3: receiver operating characteristic plots. BMJ 309(6948):188. https://doi.org/10.1136/bmj.309.6948.188

Billionnet C, Sherrill D, Annesi-Maesano I (2012) Estimating the health effects of exposure to multi-pollutant mixture. Ann Epidemiol 22:126–141. https://doi.org/10.1016/J.ANNEPIDEM.2011.11.004

Bobb JF, Valeri L, Claus Henn B, Christiani DC, Wright RO, Mazumdar M, Godleski JJ, Coull BA (2015) Bayesian kernel machine regression for estimating the health effects of multi-pollutant mixtures. Biostatistics 16:493–508. https://doi.org/10.1093/biostatistics/kxu058 [+]
Altman DG, Bland JM (1994) Diagnostic tests 3: receiver operating characteristic plots. BMJ 309(6948):188. https://doi.org/10.1136/bmj.309.6948.188

Billionnet C, Sherrill D, Annesi-Maesano I (2012) Estimating the health effects of exposure to multi-pollutant mixture. Ann Epidemiol 22:126–141. https://doi.org/10.1016/J.ANNEPIDEM.2011.11.004

Bobb JF, Valeri L, Claus Henn B, Christiani DC, Wright RO, Mazumdar M, Godleski JJ, Coull BA (2015) Bayesian kernel machine regression for estimating the health effects of multi-pollutant mixtures. Biostatistics 16:493–508. https://doi.org/10.1093/biostatistics/kxu058

Borja-Aburto VH (2000) Ecological studies. Salud Publica Mex 42:533–538

Breiman L (2001) Random forests. Mach Learn 45:5–32. https://doi.org/10.1023/A:1010933404324

CRAN Comprensive R Archive Network (2018) R-3.5.2 for Windows (32/64 bit). https://cran.r-project.org/bin/windows/base/old/3.5.2/. Accessed 10 June 2019. Accessed 10 Jun 2019

DANE National Administrative Department of Statistics (2018) Multi-purpose survey -MS 2017. Bogotá, Colombia

DHS (2019) SALUDATA- Health Observatory of Bogota http://saludata.saludcapital.gov.co/osb/index.php/datos-de-salud/salud-ambiental/consultaurgencias14anios/. Accessed 11 April 2019. Accessed 11 April 2019

Franceschi F, Cobo M, Figueredo M (2018) Discovering relationships and forecasting PM10 and PM2.5 concentrations in Bogotá, Colombia, using artificial neural networks, principal component analysis, and k-means clustering. Atmos Pollut Res 9:912–922. https://doi.org/10.1016/j.apr.2018.02.006

Galindo WG (2013) Construction dynamics by use, the locality of Kennedy 2002/2012. Bogotá

García-Ubaque JC, García-Ubaque CA, Vaca-Bohórquez ML (2011) Medical consultation in productive age population related with air pollution levels in Bogota city. Procedia Environ Sci 4:165–169. https://doi.org/10.1016/j.proenv.2011.03.020

Gorai AK, Tchounwou PB, Biswal S, Tuluri F (2018) Spatio-temporal variation of particulate matter (PM2.5) concentrations and its health impacts in a mega city, Delhi in India. Environ Health Insights 12:1–9. https://doi.org/10.1177/1178630218792861

Habibi R, Alesheikh AA, Mohammadinia A, et al (2017) An assessment of spatial pattern characterization of air pollution: a case study of CO and PM2.5 in Tehran, Iran. ISPRS Int J Geo-Inf 6:270. https://doi.org/10.3390/ijgi6090270

Hand DJ (2009) Measuring classifier performance: a coherent alternative to the area under the ROC curve. Mach Learn 77:103–123. https://doi.org/10.1007/s10994-009-5119-5

Hernández B, Velasco-Mondragón HE (2000) Cross-sectional surveys. Salud Publica Mex 42:447–455

Huang K, Xiao Q, Meng X, Geng G, Wang Y, Lyapustin A, Gu D, Liu Y (2018) Predicting monthly high-resolution PM2.5 concentrations with random forest model in the North China plain. Environ Pollut 242:675–683. https://doi.org/10.1016/j.envpol.2018.07.016

IDEAM Institute of Hydrology,Meteorology and Environmental Studies (2016) State of air quality in Colombia, 2011–2015 Report. Bogotá D.C.

Ivanov A, Voynikova D, Stoimenova M et al (2018) Random forests models of particulate matter PM10: a case study, in: AIP conference proceedings 2025, 030001. https://doi.org/10.1063/1.5064879

Jenks GF (1967) The data model concept in statistical mapping. International Yearbook of Cartography 7:186–190

Kami JA (2019) A random forest partition model for predicting NO2 concentrations from traffic flow and meteorological conditions. Sci Total Environ 651:475–483. https://doi.org/10.1016/j.scitotenv.2018.09.196

Kassomenos P, Petrakis M, Sarigiannis D, Gotti A, Karakitsios S (2011) Identifying the contribution of physical and chemical stressors to the daily number of hospital admissions implementing an artificial neural network model. Air Qual Atmos Health 4:263–272. https://doi.org/10.1007/s11869-011-0139-2

Kestenbaum B (2019) Epidemiology and biostatistics. Seattle, USA. https://doi.org/10.1007/978-3-319-96644-1

Kuhn M, Johnson K (2016) Applied predictive modeling. New York, USA. https://doi.org/10.1007/978-1-4614-6849-3

Lazcano-Ponce E, Fernández E, Salazar-Martínez E, Hernández-Avila M (2000) Cohort studies. Methodology, biases and application. Salud Publica Mex 42:230–241

Li S, Batterman S, Wasilevich E, Elasaad H, Wahl R, Mukherjee B (2011) Asthma exacerbation and proximity of residence to major roads: a population-based matched case-control study among the pediatric Medicaid population in Detroit, Michigan. Environ Health 10:34. https://doi.org/10.1186/1476-069X-10-34

Jin L, Heap Andrew D (2014) Spatial interpolation methods applied in the environmental sciences: a review. Environ Model Softw 53:173–189 https://doi.org/10.1016/j.envsoft.2013.12.008

Ly S, Charles C, Degr A (2011) Geostatistical interpolation of daily rainfall at catchment scale: the use of several variogram models in the Ourthe and Ambleve catchments, Belgium. Hydrol Earth Syst Sci 15:2259–2274. https://doi.org/10.5194/hess-15-2259-2011

MAVDT Ministry of Environment, Housing and Territorial Development (2010) Protocol for air quality monitoring. Bogota, Colombia

Mazenq J, Dubus J-C, Gaudart J, Charpin D, Viudes G, Noel G (2017) City housing atmospheric pollutant impact on emergency visit for asthma: a classification and regression tree approach. Respir Med 132:1–8. https://doi.org/10.1016/j.rmed.2017.09.004

Pandey G, Zhang B, Jian L (2013) Predicting submicron air pollution indicators: a machine learning approach. Environ Sci Processes Impacts 15:996–1005. https://doi.org/10.1039/c3em30890a

Polezer G, Tadano YS, Siqueira HV, Godoi AFL, Yamamoto CI, de André PA, Pauliquevis T, Andrade MF, Oliveira A, Saldiva PHN, Taylor PE, Godoi RHM (2018) Assessing the impact of PM2.5 on respiratory disease using artificial neural networks. Environ Pollut 235:394–403. https://doi.org/10.1016/j.envpol.2017.12.111

Ramírez O, Sánchez de la Campa AM, Amato F, Catacolí RA, Rojas NY, de la Rosa J (2018) Chemical composition and source apportionment of PM10 at an urban background site in a high–altitude Latin American megacity (Bogota, Colombia). Environ Pollut 233:142–155. https://doi.org/10.1016/j.envpol.2017.10.045

Reid CE, Jerrett M, Tager IB, Petersen ML, Mann JK, Balmes JR (2016) Differential respiratory health effects from the 2008 northern California wildfires: a spatiotemporal approach. Environ Res 150:227–235. https://doi.org/10.1016/J.ENVRES.2016.06.012

Rodríguez-Villamizar LA, Rojas-Roa NY, Blanco-Becerra LC, Herrera-Galindo V, Fernández-Niño J (2018) Short-term effects of air pollution on respiratory and circulatory morbidity in Colombia 2011−2014: a multi-city, time-series analysis. Int J Environ Res Public Health 15:2–12. https://doi.org/10.3390/ijerph15081610

Rokach L, Maimon O (2015) Data mining with decision trees: theory and applications, 2nd edn. World Scientific Publishing Co. Pte. Ltd, Singapore, p 5

Salam MT, Islam T, Gilliland FD (2008) Recent evidence for adverse effects of residential proximity to traffic sources on asthma. Curr Opin Pulm Med 14:3–8. https://doi.org/10.1097/MCP.0b013e3282f1987a

Sajjadia SA, Zolfagharib G, Adabc H et al (2017) Measurement and modeling of particulate matter concentrations: applying spatial analysis and regression techniques to assess air quality. MethodsX 4:372–390. https://doi.org/10.1016/j.mex.2017.09.006

Schapire RE, Freund Y (2012) Boosting: foundations and algorithms, adaptive computation and machine learning. MIT Press, London

SDA District Secretariat for the Environment (2017) Air quality annual report of Bogota, 2016. Bogotá, Colombia

SDP District Planning Secretariat (2018) Monograph 2017 assessment of the main territorial, infrastructure, demographic and socio-economic aspects of the locality of Kennedy 08. Bogotá, Colombia

Valle Benavides AR del (2017) ROC curves (receiver-operating-characteristic) and their applications. Universidad de Sevilla

Weizhen H, Zhengqiang L, Yuhuan Z, et al (2014) Using support vector regression to predict PM10 and PM2.5, in: IOP conference series: Earth and Environmental Science. IOP. https://doi.org/10.1088/1755-1315/17/1/012268

Westerlund J, Urbain JP, Bonilla J (2014) Application of air quality combination forecasting to Bogota. Atmos Environ 89:22–28. https://doi.org/10.1016/j.atmosenv.2014.02.015

WHO (2006) WHO Air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide. Global update (2005) Geneva. Switzerland

Yu Y, Yao S, Dong H, Wang L, Wang C, Ji X, Ji M, Yao X, Zhang Z (2019) Association between short-term exposure to particulate matter air pollution and cause-specific mortality in Changzhou, China. Environ Res 170:7–15. https://doi.org/10.1016/j.envres.2018.11.041

Zhan Y, Luo Y, Deng X, Chen H, Grieneisen ML, Shen X, Zhu L, Zhang M (2017) Spatiotemporal prediction of continuous daily PM2.5 concentrations across China using a spatially explicit machine learning algorithm. Environ Pollut 233:464–473. https://doi.org/10.1016/j.atmosenv.2017.02.023

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record