dc.contributor.author |
Molina-Gomez, Nidia Isabel
|
es_ES |
dc.contributor.author |
Calderón-Rivera, Dayam Soret
|
es_ES |
dc.contributor.author |
Sierra-Parada, Ronal
|
es_ES |
dc.contributor.author |
Díaz Arévalo, Jose Luis
|
es_ES |
dc.contributor.author |
López Jiménez, Petra Amparo
|
es_ES |
dc.date.accessioned |
2021-03-17T04:31:52Z |
|
dc.date.available |
2021-03-17T04:31:52Z |
|
dc.date.issued |
2021-01 |
es_ES |
dc.identifier.issn |
0020-7128 |
es_ES |
dc.identifier.uri |
http://hdl.handle.net/10251/163978 |
|
dc.description.abstract |
[EN] Thousands of deaths associated with air pollution each year could be prevented by forecasting the behavior of factors that pose risks to people's health and their geographical distribution. Proximity to pollution sources, degree of urbanization, and population density are some of the factors whose spatial distribution enables the identification of possible influence on the presence of respiratory diseases (RD). Currently, Bogota is among the cities with the poorest air quality in Latin America. Specifically, the locality of Kennedy is one of the zones in the city with the highest recorded concentration levels of local pollutants over the last 10 years. From 2009 to 2016, there were 8619 deaths associated with respiratory and cardiovascular diseases in the locality. Given these characteristics, this study set out to identify and analyze the areas in which the primary socioeconomic and environmental conditions contribute to the presence of symptoms associated with RD. To this end, information collected in field by performing georeferenced surveys was analyzed through geostatistical and machine learning tools which carried out cluster and pattern analyses. Random forests and AdaBoost were applied to establish hot spots where RD could occur, given the conjugation of predictor variables in the micro-territory. It was found that random forests outperformed AdaBoost with 0.63 AUC. In particular, this study's approach applies to densely populated municipalities with high levels of air pollution. In using these tools, municipalities can anticipate environmental health situations and reduce the cost of respiratory disease treatments. |
es_ES |
dc.description.sponsorship |
Many thanks to the members of the Intelligence and Territorial Analysis Group of the Universidad Santo Tomás for their collaboration in conducting the fieldwork. |
es_ES |
dc.language |
Inglés |
es_ES |
dc.publisher |
Springer-Verlag |
es_ES |
dc.relation.ispartof |
International Journal of Biometeorology |
es_ES |
dc.rights |
Reserva de todos los derechos |
es_ES |
dc.subject |
Geostatistics |
es_ES |
dc.subject |
Machine learning |
es_ES |
dc.subject |
Sustainable development |
es_ES |
dc.subject |
Air quality |
es_ES |
dc.subject |
Hot spots |
es_ES |
dc.subject.classification |
TECNOLOGIA DEL MEDIO AMBIENTE |
es_ES |
dc.subject.classification |
INGENIERIA HIDRAULICA |
es_ES |
dc.title |
Analysis of incidence of air quality on human health: a case study on the relationship between pollutant concentrations and respiratory diseases in Kennedy, Bogotá |
es_ES |
dc.type |
Artículo |
es_ES |
dc.identifier.doi |
10.1007/s00484-020-01955-4 |
es_ES |
dc.rights.accessRights |
Abierto |
es_ES |
dc.contributor.affiliation |
Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient |
es_ES |
dc.description.bibliographicCitation |
Molina-Gomez, NI.; Calderón-Rivera, DS.; Sierra-Parada, R.; Díaz Arévalo, JL.; López Jiménez, PA. (2021). Analysis of incidence of air quality on human health: a case study on the relationship between pollutant concentrations and respiratory diseases in Kennedy, Bogotá. International Journal of Biometeorology. 65(1):119-132. https://doi.org/10.1007/s00484-020-01955-4 |
es_ES |
dc.description.accrualMethod |
S |
es_ES |
dc.relation.publisherversion |
https://doi.org/10.1007/s00484-020-01955-4 |
es_ES |
dc.description.upvformatpinicio |
119 |
es_ES |
dc.description.upvformatpfin |
132 |
es_ES |
dc.type.version |
info:eu-repo/semantics/publishedVersion |
es_ES |
dc.description.volume |
65 |
es_ES |
dc.description.issue |
1 |
es_ES |
dc.identifier.pmid |
32661801 |
es_ES |
dc.relation.pasarela |
S\415803 |
es_ES |
dc.description.references |
Altman DG, Bland JM (1994) Diagnostic tests 3: receiver operating characteristic plots. BMJ 309(6948):188. https://doi.org/10.1136/bmj.309.6948.188 |
es_ES |
dc.description.references |
Billionnet C, Sherrill D, Annesi-Maesano I (2012) Estimating the health effects of exposure to multi-pollutant mixture. Ann Epidemiol 22:126–141. https://doi.org/10.1016/J.ANNEPIDEM.2011.11.004 |
es_ES |
dc.description.references |
Bobb JF, Valeri L, Claus Henn B, Christiani DC, Wright RO, Mazumdar M, Godleski JJ, Coull BA (2015) Bayesian kernel machine regression for estimating the health effects of multi-pollutant mixtures. Biostatistics 16:493–508. https://doi.org/10.1093/biostatistics/kxu058 |
es_ES |
dc.description.references |
Borja-Aburto VH (2000) Ecological studies. Salud Publica Mex 42:533–538 |
es_ES |
dc.description.references |
Breiman L (2001) Random forests. Mach Learn 45:5–32. https://doi.org/10.1023/A:1010933404324 |
es_ES |
dc.description.references |
CRAN Comprensive R Archive Network (2018) R-3.5.2 for Windows (32/64 bit). https://cran.r-project.org/bin/windows/base/old/3.5.2/. Accessed 10 June 2019. Accessed 10 Jun 2019 |
es_ES |
dc.description.references |
DANE National Administrative Department of Statistics (2018) Multi-purpose survey -MS 2017. Bogotá, Colombia |
es_ES |
dc.description.references |
DHS (2019) SALUDATA- Health Observatory of Bogota http://saludata.saludcapital.gov.co/osb/index.php/datos-de-salud/salud-ambiental/consultaurgencias14anios/. Accessed 11 April 2019. Accessed 11 April 2019 |
es_ES |
dc.description.references |
Franceschi F, Cobo M, Figueredo M (2018) Discovering relationships and forecasting PM10 and PM2.5 concentrations in Bogotá, Colombia, using artificial neural networks, principal component analysis, and k-means clustering. Atmos Pollut Res 9:912–922. https://doi.org/10.1016/j.apr.2018.02.006 |
es_ES |
dc.description.references |
Galindo WG (2013) Construction dynamics by use, the locality of Kennedy 2002/2012. Bogotá |
es_ES |
dc.description.references |
García-Ubaque JC, García-Ubaque CA, Vaca-Bohórquez ML (2011) Medical consultation in productive age population related with air pollution levels in Bogota city. Procedia Environ Sci 4:165–169. https://doi.org/10.1016/j.proenv.2011.03.020 |
es_ES |
dc.description.references |
Gorai AK, Tchounwou PB, Biswal S, Tuluri F (2018) Spatio-temporal variation of particulate matter (PM2.5) concentrations and its health impacts in a mega city, Delhi in India. Environ Health Insights 12:1–9. https://doi.org/10.1177/1178630218792861 |
es_ES |
dc.description.references |
Habibi R, Alesheikh AA, Mohammadinia A, et al (2017) An assessment of spatial pattern characterization of air pollution: a case study of CO and PM2.5 in Tehran, Iran. ISPRS Int J Geo-Inf 6:270. https://doi.org/10.3390/ijgi6090270 |
es_ES |
dc.description.references |
Hand DJ (2009) Measuring classifier performance: a coherent alternative to the area under the ROC curve. Mach Learn 77:103–123. https://doi.org/10.1007/s10994-009-5119-5 |
es_ES |
dc.description.references |
Hernández B, Velasco-Mondragón HE (2000) Cross-sectional surveys. Salud Publica Mex 42:447–455 |
es_ES |
dc.description.references |
Huang K, Xiao Q, Meng X, Geng G, Wang Y, Lyapustin A, Gu D, Liu Y (2018) Predicting monthly high-resolution PM2.5 concentrations with random forest model in the North China plain. Environ Pollut 242:675–683. https://doi.org/10.1016/j.envpol.2018.07.016 |
es_ES |
dc.description.references |
IDEAM Institute of Hydrology,Meteorology and Environmental Studies (2016) State of air quality in Colombia, 2011–2015 Report. Bogotá D.C. |
es_ES |
dc.description.references |
Ivanov A, Voynikova D, Stoimenova M et al (2018) Random forests models of particulate matter PM10: a case study, in: AIP conference proceedings 2025, 030001. https://doi.org/10.1063/1.5064879 |
es_ES |
dc.description.references |
Jenks GF (1967) The data model concept in statistical mapping. International Yearbook of Cartography 7:186–190 |
es_ES |
dc.description.references |
Kami JA (2019) A random forest partition model for predicting NO2 concentrations from traffic flow and meteorological conditions. Sci Total Environ 651:475–483. https://doi.org/10.1016/j.scitotenv.2018.09.196 |
es_ES |
dc.description.references |
Kassomenos P, Petrakis M, Sarigiannis D, Gotti A, Karakitsios S (2011) Identifying the contribution of physical and chemical stressors to the daily number of hospital admissions implementing an artificial neural network model. Air Qual Atmos Health 4:263–272. https://doi.org/10.1007/s11869-011-0139-2 |
es_ES |
dc.description.references |
Kestenbaum B (2019) Epidemiology and biostatistics. Seattle, USA. https://doi.org/10.1007/978-3-319-96644-1 |
es_ES |
dc.description.references |
Kuhn M, Johnson K (2016) Applied predictive modeling. New York, USA. https://doi.org/10.1007/978-1-4614-6849-3 |
es_ES |
dc.description.references |
Lazcano-Ponce E, Fernández E, Salazar-Martínez E, Hernández-Avila M (2000) Cohort studies. Methodology, biases and application. Salud Publica Mex 42:230–241 |
es_ES |
dc.description.references |
Li S, Batterman S, Wasilevich E, Elasaad H, Wahl R, Mukherjee B (2011) Asthma exacerbation and proximity of residence to major roads: a population-based matched case-control study among the pediatric Medicaid population in Detroit, Michigan. Environ Health 10:34. https://doi.org/10.1186/1476-069X-10-34 |
es_ES |
dc.description.references |
Jin L, Heap Andrew D (2014) Spatial interpolation methods applied in the environmental sciences: a review. Environ Model Softw 53:173–189 https://doi.org/10.1016/j.envsoft.2013.12.008 |
es_ES |
dc.description.references |
Ly S, Charles C, Degr A (2011) Geostatistical interpolation of daily rainfall at catchment scale: the use of several variogram models in the Ourthe and Ambleve catchments, Belgium. Hydrol Earth Syst Sci 15:2259–2274. https://doi.org/10.5194/hess-15-2259-2011 |
es_ES |
dc.description.references |
MAVDT Ministry of Environment, Housing and Territorial Development (2010) Protocol for air quality monitoring. Bogota, Colombia |
es_ES |
dc.description.references |
Mazenq J, Dubus J-C, Gaudart J, Charpin D, Viudes G, Noel G (2017) City housing atmospheric pollutant impact on emergency visit for asthma: a classification and regression tree approach. Respir Med 132:1–8. https://doi.org/10.1016/j.rmed.2017.09.004 |
es_ES |
dc.description.references |
Pandey G, Zhang B, Jian L (2013) Predicting submicron air pollution indicators: a machine learning approach. Environ Sci Processes Impacts 15:996–1005. https://doi.org/10.1039/c3em30890a |
es_ES |
dc.description.references |
Polezer G, Tadano YS, Siqueira HV, Godoi AFL, Yamamoto CI, de André PA, Pauliquevis T, Andrade MF, Oliveira A, Saldiva PHN, Taylor PE, Godoi RHM (2018) Assessing the impact of PM2.5 on respiratory disease using artificial neural networks. Environ Pollut 235:394–403. https://doi.org/10.1016/j.envpol.2017.12.111 |
es_ES |
dc.description.references |
Ramírez O, Sánchez de la Campa AM, Amato F, Catacolí RA, Rojas NY, de la Rosa J (2018) Chemical composition and source apportionment of PM10 at an urban background site in a high–altitude Latin American megacity (Bogota, Colombia). Environ Pollut 233:142–155. https://doi.org/10.1016/j.envpol.2017.10.045 |
es_ES |
dc.description.references |
Reid CE, Jerrett M, Tager IB, Petersen ML, Mann JK, Balmes JR (2016) Differential respiratory health effects from the 2008 northern California wildfires: a spatiotemporal approach. Environ Res 150:227–235. https://doi.org/10.1016/J.ENVRES.2016.06.012 |
es_ES |
dc.description.references |
Rodríguez-Villamizar LA, Rojas-Roa NY, Blanco-Becerra LC, Herrera-Galindo V, Fernández-Niño J (2018) Short-term effects of air pollution on respiratory and circulatory morbidity in Colombia 2011−2014: a multi-city, time-series analysis. Int J Environ Res Public Health 15:2–12. https://doi.org/10.3390/ijerph15081610 |
es_ES |
dc.description.references |
Rokach L, Maimon O (2015) Data mining with decision trees: theory and applications, 2nd edn. World Scientific Publishing Co. Pte. Ltd, Singapore, p 5 |
es_ES |
dc.description.references |
Salam MT, Islam T, Gilliland FD (2008) Recent evidence for adverse effects of residential proximity to traffic sources on asthma. Curr Opin Pulm Med 14:3–8. https://doi.org/10.1097/MCP.0b013e3282f1987a |
es_ES |
dc.description.references |
Sajjadia SA, Zolfagharib G, Adabc H et al (2017) Measurement and modeling of particulate matter concentrations: applying spatial analysis and regression techniques to assess air quality. MethodsX 4:372–390. https://doi.org/10.1016/j.mex.2017.09.006 |
es_ES |
dc.description.references |
Schapire RE, Freund Y (2012) Boosting: foundations and algorithms, adaptive computation and machine learning. MIT Press, London |
es_ES |
dc.description.references |
SDA District Secretariat for the Environment (2017) Air quality annual report of Bogota, 2016. Bogotá, Colombia |
es_ES |
dc.description.references |
SDP District Planning Secretariat (2018) Monograph 2017 assessment of the main territorial, infrastructure, demographic and socio-economic aspects of the locality of Kennedy 08. Bogotá, Colombia |
es_ES |
dc.description.references |
Valle Benavides AR del (2017) ROC curves (receiver-operating-characteristic) and their applications. Universidad de Sevilla |
es_ES |
dc.description.references |
Weizhen H, Zhengqiang L, Yuhuan Z, et al (2014) Using support vector regression to predict PM10 and PM2.5, in: IOP conference series: Earth and Environmental Science. IOP. https://doi.org/10.1088/1755-1315/17/1/012268 |
es_ES |
dc.description.references |
Westerlund J, Urbain JP, Bonilla J (2014) Application of air quality combination forecasting to Bogota. Atmos Environ 89:22–28. https://doi.org/10.1016/j.atmosenv.2014.02.015 |
es_ES |
dc.description.references |
WHO (2006) WHO Air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide. Global update (2005) Geneva. Switzerland |
es_ES |
dc.description.references |
Yu Y, Yao S, Dong H, Wang L, Wang C, Ji X, Ji M, Yao X, Zhang Z (2019) Association between short-term exposure to particulate matter air pollution and cause-specific mortality in Changzhou, China. Environ Res 170:7–15. https://doi.org/10.1016/j.envres.2018.11.041 |
es_ES |
dc.description.references |
Zhan Y, Luo Y, Deng X, Chen H, Grieneisen ML, Shen X, Zhu L, Zhang M (2017) Spatiotemporal prediction of continuous daily PM2.5 concentrations across China using a spatially explicit machine learning algorithm. Environ Pollut 233:464–473. https://doi.org/10.1016/j.atmosenv.2017.02.023 |
es_ES |
dc.subject.ods |
03.- Garantizar una vida saludable y promover el bienestar para todos y todas en todas las edades |
es_ES |
dc.subject.ods |
11.- Conseguir que las ciudades y los asentamientos humanos sean inclusivos, seguros, resilientes y sostenibles |
es_ES |