- -

Optimal eighth-order iterative methods for approximating multiple zeros of nonlinear functions

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Optimal eighth-order iterative methods for approximating multiple zeros of nonlinear functions

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Zafar, Fiza es_ES
dc.contributor.author Cordero Barbero, Alicia es_ES
dc.contributor.author Junjua, Moin-ud-Din es_ES
dc.contributor.author Torregrosa Sánchez, Juan Ramón es_ES
dc.date.accessioned 2021-03-17T04:31:56Z
dc.date.available 2021-03-17T04:31:56Z
dc.date.issued 2020-01-11 es_ES
dc.identifier.issn 1578-7303 es_ES
dc.identifier.uri http://hdl.handle.net/10251/163979
dc.description.abstract [EN] It is well known that the optimal iterative methods are of more significance than the non-optimal ones in view of their efficiency and convergence speed. There are only a few number of optimal iterative methods for finding multiple zeros with eighth order of convergence. In this paper, we propose a new family of optimal eighth order convergent iterative methods for multiple roots with known multiplicity. We present an extensive convergence analysis which confirms theoretically eighth-order convergence of the presented scheme. Moreover, we consider several real life problems that contain simple as well as multiple zeros in order to compare our proposed methods with the existing eighth-order iterative schemes. Some dynamical aspects of the presented methods are also discussed. Finally, we conclude on the basis of obtained numerical results that the proposed family of iterative methods perform better than the existing methods in terms of residual error, computational order of convergence and difference between the two consecutive iterations. es_ES
dc.description.sponsorship This research was partially supported by PGC2018-095896-B-C22 (MCIU/AEI/FEDER, UE), Generalitat Valenciana PROMETEO/2016/089 and Schlumberger Foundation-Faculty for Future Program. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Revista de la Real Academia de Ciencias Exactas Físicas y Naturales Serie A Matemáticas es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Nonlinear equations es_ES
dc.subject Order of convergence es_ES
dc.subject Multiple roots es_ES
dc.subject Optimality es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Optimal eighth-order iterative methods for approximating multiple zeros of nonlinear functions es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s13398-020-00794-7 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F089/ES/Resolución de ecuaciones y sistemas no lineales mediante técnicas iterativas: análisis dinámico y aplicaciones/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-095896-B-C22/ES/DISEÑO, ANALISIS Y ESTABILIDAD DE PROCESOS ITERATIVOS APLICADOS A LAS ECUACIONES INTEGRALES Y MATRICIALES Y A LA COMUNICACION AEROESPACIAL/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Zafar, F.; Cordero Barbero, A.; Junjua, M.; Torregrosa Sánchez, JR. (2020). Optimal eighth-order iterative methods for approximating multiple zeros of nonlinear functions. Revista de la Real Academia de Ciencias Exactas Físicas y Naturales Serie A Matemáticas. 114(2):1-17. https://doi.org/10.1007/s13398-020-00794-7 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s13398-020-00794-7 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 17 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 114 es_ES
dc.description.issue 2 es_ES
dc.relation.pasarela S\423834 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Schlumberger Foundation es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Ciencia, Innovación y Universidades es_ES
dc.description.references Behl, R., Cordero, A., Motsa, S.S., Torregrosa, J.R.: On developing fourth-order optimal families of methods for multiple roots and their dynamics. Appl. Math. Comput. 265(15), 520–532 (2015) es_ES
dc.description.references Behl, R., Cordero, A., Motsa, S.S., Torregrosa, J.R.: An eighth-order family of optimal multiple root finders and its dynamics. Numer. Algorithm (2017). https://doi.org/10.1007/s11075-017-0361-6 es_ES
dc.description.references Behl, R., Cordero, A., Motsa, S.S., Torregrosa, J.R., Kanwar, V.: An optimal fourth-order family of methods for multiple roots and its dynamics. Numer. Algorithm 71(4), 775–796 (2016) es_ES
dc.description.references Chicharro, F.I., Cordero, A., Torregrosa, J.R.: Drawing dynamical and parameters planes of iterative families and methods. Sci. World J. (2013) (Article ID 780153, 9 pages) es_ES
dc.description.references Geum, Y.H., Kim, Y.I., Neta, B.: A class of two-point sixth-order multiple-zero finders of modified double-Newton type and their dynamics. Appl. Math. Comput. 270, 387–400 (2015) es_ES
dc.description.references Geum, Y.H., Kim, Y.I., Neta, B.: A sixth-order family of three-point modified Newton-like multiple-root finders and the dynamics behind their extraneous fixed points. Appl. Math. Comput. 283, 120–140 (2016) es_ES
dc.description.references Geum, Y.H., Kim, Y.I., Neta, B.: Constructing a family of optimal eighth-order modified Newton-type multiple-zero finders along with dynamics be-hind their purely imaginary extraneous fixed points. J. Comput. Appl. Math. 333, 131–156 (2018) es_ES
dc.description.references Hueso, J.L., Martínez, E., Teruel, C.: Determination of multiple roots of nonlinear equations and applications. J. Math. Chem. 53, 880–892 (2015) es_ES
dc.description.references Jay, L.O.: A note on Q-order of convergence. BIT Numer. Math. 41, 422–429 (2001) es_ES
dc.description.references Kung, H.T., Traub, J.F.: Optimal order of one-point and multipoint iteration. Assoc. Comput. Mach. 21, 643–651 (1974) es_ES
dc.description.references Li, S.G., Cheng, L.Z., Neta, B.: Some fourth-order nonlinear solvers with closed formulae for multiple roots. Comput. Math. Appl. 59, 126–135 (2010) es_ES
dc.description.references Li, S., Liao, X., Cheng, L.: A new fourth-order iterative method for finding multiple roots of nonlinear equations. Appl. Math. Comput. 215, 1288–1292 (2009) es_ES
dc.description.references Liu, B., Zhou, X.: A new family of fourth-order methods for multiple roots of nonlinear equations. Nonlinear Anal. Model. Control 18(2), 143–152 (2013) es_ES
dc.description.references Neta, B.: Extension of Murakami’s high-order non-linear solver to multiple roots. Int. J. Comput. Math. 87(5), 1023–1031 (2010) es_ES
dc.description.references Ostrowski, A.M.: Solution of Equations and Systems of Equations. Academic Press, New York (1960) es_ES
dc.description.references Petković, M.S., Neta, B., Petković, L.D., Dz̆unić, J.: Multipoint Methods for Solving Nonlinear Equations. Academic Press, New York (2013) es_ES
dc.description.references Shacham, M.: Numerical solution of constrained nonlinear algebraic equations. Int. J. Numer. Method Eng. 23, 1455–1481 (1986) es_ES
dc.description.references Sharifi, M., Babajee, D.K.R., Soleymani, F.: Finding the solution of nonlinear equations by a class of optimal methods. Comput. Math. Appl. 63, 764–774 (2012) es_ES
dc.description.references Sharma, J.R., Sharma, R.: Modified Jarratt method for computing multiple roots. Appl. Math. Comput. 217, 878–881 (2010) es_ES
dc.description.references Soleymani, F., Babajee, D.K.R.: Computing multiple zeros using a class of quartically convergent methods. Alex. Eng. J. 52, 531–541 (2013) es_ES
dc.description.references Soleymani, F., Babajee, D.K.R., Lofti, T.: On a numerical technique for finding multiple zeros and its dynamic. Egypt. Math. Soc. 21, 346–353 (2013) es_ES
dc.description.references Thukral, R.: Introduction to higher-order iterative methods for finding multiple roots of nonlinear equations. J. Math. (2013). https://doi.org/10.1155/2013/404635. (Article ID 404635, 3 pages) es_ES
dc.description.references Thukral, R.: A new family of fourth-order iterative methods for solving nonlinear equations with multiple roots. Numer. Math. Stoch. 6(1), 37–44 (2014) es_ES
dc.description.references Traub, J.F.: Iterative Methods for the Solution of Equations. Prentice-Hall, Englewood Cliffs (1964) es_ES
dc.description.references Zafar, F., Cordero, A., Quratulain, R., Torregrosa, J.R.: Optimal iterative methods for finding multiple roots of nonlinear equations using free parameters. J. Math. Chem. (2017). https://doi.org/10.1007/s10910-017-0813-1 es_ES
dc.description.references Zhou, X., Chen, X., Song, Y.: Constructing higher-order methods for obtaining the muliplte roots of nonlinear equations. Comput. Math. Appl. 235, 4199–4206 (2011) es_ES
dc.description.references Zhou, X., Chen, X., Song, Y.: Families of third and fourth order methods for multiple roots of nonlinear equations. Appl. Math. Comput. 219, 6030–6038 (2013) es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem