Mostrar el registro sencillo del ítem
dc.contributor.author | Zafar, Fiza | es_ES |
dc.contributor.author | Cordero Barbero, Alicia | es_ES |
dc.contributor.author | Junjua, Moin-ud-Din | es_ES |
dc.contributor.author | Torregrosa Sánchez, Juan Ramón | es_ES |
dc.date.accessioned | 2021-03-17T04:31:56Z | |
dc.date.available | 2021-03-17T04:31:56Z | |
dc.date.issued | 2020-01-11 | es_ES |
dc.identifier.issn | 1578-7303 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/163979 | |
dc.description.abstract | [EN] It is well known that the optimal iterative methods are of more significance than the non-optimal ones in view of their efficiency and convergence speed. There are only a few number of optimal iterative methods for finding multiple zeros with eighth order of convergence. In this paper, we propose a new family of optimal eighth order convergent iterative methods for multiple roots with known multiplicity. We present an extensive convergence analysis which confirms theoretically eighth-order convergence of the presented scheme. Moreover, we consider several real life problems that contain simple as well as multiple zeros in order to compare our proposed methods with the existing eighth-order iterative schemes. Some dynamical aspects of the presented methods are also discussed. Finally, we conclude on the basis of obtained numerical results that the proposed family of iterative methods perform better than the existing methods in terms of residual error, computational order of convergence and difference between the two consecutive iterations. | es_ES |
dc.description.sponsorship | This research was partially supported by PGC2018-095896-B-C22 (MCIU/AEI/FEDER, UE), Generalitat Valenciana PROMETEO/2016/089 and Schlumberger Foundation-Faculty for Future Program. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Revista de la Real Academia de Ciencias Exactas Físicas y Naturales Serie A Matemáticas | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Nonlinear equations | es_ES |
dc.subject | Order of convergence | es_ES |
dc.subject | Multiple roots | es_ES |
dc.subject | Optimality | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Optimal eighth-order iterative methods for approximating multiple zeros of nonlinear functions | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s13398-020-00794-7 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F089/ES/Resolución de ecuaciones y sistemas no lineales mediante técnicas iterativas: análisis dinámico y aplicaciones/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-095896-B-C22/ES/DISEÑO, ANALISIS Y ESTABILIDAD DE PROCESOS ITERATIVOS APLICADOS A LAS ECUACIONES INTEGRALES Y MATRICIALES Y A LA COMUNICACION AEROESPACIAL/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Zafar, F.; Cordero Barbero, A.; Junjua, M.; Torregrosa Sánchez, JR. (2020). Optimal eighth-order iterative methods for approximating multiple zeros of nonlinear functions. Revista de la Real Academia de Ciencias Exactas Físicas y Naturales Serie A Matemáticas. 114(2):1-17. https://doi.org/10.1007/s13398-020-00794-7 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s13398-020-00794-7 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 17 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 114 | es_ES |
dc.description.issue | 2 | es_ES |
dc.relation.pasarela | S\423834 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Schlumberger Foundation | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Ministerio de Ciencia, Innovación y Universidades | es_ES |
dc.description.references | Behl, R., Cordero, A., Motsa, S.S., Torregrosa, J.R.: On developing fourth-order optimal families of methods for multiple roots and their dynamics. Appl. Math. Comput. 265(15), 520–532 (2015) | es_ES |
dc.description.references | Behl, R., Cordero, A., Motsa, S.S., Torregrosa, J.R.: An eighth-order family of optimal multiple root finders and its dynamics. Numer. Algorithm (2017). https://doi.org/10.1007/s11075-017-0361-6 | es_ES |
dc.description.references | Behl, R., Cordero, A., Motsa, S.S., Torregrosa, J.R., Kanwar, V.: An optimal fourth-order family of methods for multiple roots and its dynamics. Numer. Algorithm 71(4), 775–796 (2016) | es_ES |
dc.description.references | Chicharro, F.I., Cordero, A., Torregrosa, J.R.: Drawing dynamical and parameters planes of iterative families and methods. Sci. World J. (2013) (Article ID 780153, 9 pages) | es_ES |
dc.description.references | Geum, Y.H., Kim, Y.I., Neta, B.: A class of two-point sixth-order multiple-zero finders of modified double-Newton type and their dynamics. Appl. Math. Comput. 270, 387–400 (2015) | es_ES |
dc.description.references | Geum, Y.H., Kim, Y.I., Neta, B.: A sixth-order family of three-point modified Newton-like multiple-root finders and the dynamics behind their extraneous fixed points. Appl. Math. Comput. 283, 120–140 (2016) | es_ES |
dc.description.references | Geum, Y.H., Kim, Y.I., Neta, B.: Constructing a family of optimal eighth-order modified Newton-type multiple-zero finders along with dynamics be-hind their purely imaginary extraneous fixed points. J. Comput. Appl. Math. 333, 131–156 (2018) | es_ES |
dc.description.references | Hueso, J.L., Martínez, E., Teruel, C.: Determination of multiple roots of nonlinear equations and applications. J. Math. Chem. 53, 880–892 (2015) | es_ES |
dc.description.references | Jay, L.O.: A note on Q-order of convergence. BIT Numer. Math. 41, 422–429 (2001) | es_ES |
dc.description.references | Kung, H.T., Traub, J.F.: Optimal order of one-point and multipoint iteration. Assoc. Comput. Mach. 21, 643–651 (1974) | es_ES |
dc.description.references | Li, S.G., Cheng, L.Z., Neta, B.: Some fourth-order nonlinear solvers with closed formulae for multiple roots. Comput. Math. Appl. 59, 126–135 (2010) | es_ES |
dc.description.references | Li, S., Liao, X., Cheng, L.: A new fourth-order iterative method for finding multiple roots of nonlinear equations. Appl. Math. Comput. 215, 1288–1292 (2009) | es_ES |
dc.description.references | Liu, B., Zhou, X.: A new family of fourth-order methods for multiple roots of nonlinear equations. Nonlinear Anal. Model. Control 18(2), 143–152 (2013) | es_ES |
dc.description.references | Neta, B.: Extension of Murakami’s high-order non-linear solver to multiple roots. Int. J. Comput. Math. 87(5), 1023–1031 (2010) | es_ES |
dc.description.references | Ostrowski, A.M.: Solution of Equations and Systems of Equations. Academic Press, New York (1960) | es_ES |
dc.description.references | Petković, M.S., Neta, B., Petković, L.D., Dz̆unić, J.: Multipoint Methods for Solving Nonlinear Equations. Academic Press, New York (2013) | es_ES |
dc.description.references | Shacham, M.: Numerical solution of constrained nonlinear algebraic equations. Int. J. Numer. Method Eng. 23, 1455–1481 (1986) | es_ES |
dc.description.references | Sharifi, M., Babajee, D.K.R., Soleymani, F.: Finding the solution of nonlinear equations by a class of optimal methods. Comput. Math. Appl. 63, 764–774 (2012) | es_ES |
dc.description.references | Sharma, J.R., Sharma, R.: Modified Jarratt method for computing multiple roots. Appl. Math. Comput. 217, 878–881 (2010) | es_ES |
dc.description.references | Soleymani, F., Babajee, D.K.R.: Computing multiple zeros using a class of quartically convergent methods. Alex. Eng. J. 52, 531–541 (2013) | es_ES |
dc.description.references | Soleymani, F., Babajee, D.K.R., Lofti, T.: On a numerical technique for finding multiple zeros and its dynamic. Egypt. Math. Soc. 21, 346–353 (2013) | es_ES |
dc.description.references | Thukral, R.: Introduction to higher-order iterative methods for finding multiple roots of nonlinear equations. J. Math. (2013). https://doi.org/10.1155/2013/404635. (Article ID 404635, 3 pages) | es_ES |
dc.description.references | Thukral, R.: A new family of fourth-order iterative methods for solving nonlinear equations with multiple roots. Numer. Math. Stoch. 6(1), 37–44 (2014) | es_ES |
dc.description.references | Traub, J.F.: Iterative Methods for the Solution of Equations. Prentice-Hall, Englewood Cliffs (1964) | es_ES |
dc.description.references | Zafar, F., Cordero, A., Quratulain, R., Torregrosa, J.R.: Optimal iterative methods for finding multiple roots of nonlinear equations using free parameters. J. Math. Chem. (2017). https://doi.org/10.1007/s10910-017-0813-1 | es_ES |
dc.description.references | Zhou, X., Chen, X., Song, Y.: Constructing higher-order methods for obtaining the muliplte roots of nonlinear equations. Comput. Math. Appl. 235, 4199–4206 (2011) | es_ES |
dc.description.references | Zhou, X., Chen, X., Song, Y.: Families of third and fourth order methods for multiple roots of nonlinear equations. Appl. Math. Comput. 219, 6030–6038 (2013) | es_ES |