- -

The MPK8-TCP14 pathway promotes seed germination in Arabidopsis

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

The MPK8-TCP14 pathway promotes seed germination in Arabidopsis

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Zhang, Wei es_ES
dc.contributor.author Cochet, Francoise es_ES
dc.contributor.author Ponnaiah, Maharajah es_ES
dc.contributor.author Lebreton, Sandrine es_ES
dc.contributor.author Matheron, Lucrece es_ES
dc.contributor.author Pionneau, Cedric es_ES
dc.contributor.author Boudsocq, Marie es_ES
dc.contributor.author Resentini, Francesca es_ES
dc.contributor.author Huguet, Stephanie es_ES
dc.contributor.author BLAZQUEZ RODRIGUEZ, MIGUEL ANGEL es_ES
dc.contributor.author Bailly, Christophe es_ES
dc.contributor.author Puyaubert, Juliette es_ES
dc.contributor.author Baudouin, Emmanuel es_ES
dc.date.accessioned 2021-03-17T04:31:58Z
dc.date.available 2021-03-17T04:31:58Z
dc.date.issued 2019-11 es_ES
dc.identifier.issn 0960-7412 es_ES
dc.identifier.uri http://hdl.handle.net/10251/163980
dc.description.abstract [EN] The accurate control of dormancy release and germination is critical for successful plantlet establishment. Investigations in cereals hypothesized a crucial role for specific MAP kinase (MPK) pathways in promoting dormancy release, although the identity of the MPK involved and the downstream events remain unclear. In this work, we characterized mutants for Arabidopsis thaliana MAP kinase 8 (MPK8). Mpk8 seeds presented a deeper dormancy than wild-type (WT) at harvest that was less efficiently alleviated by after-ripening and gibberellic acid treatment. We identified Teosinte Branched1/Cycloidea/Proliferating cell factor 14 (TCP14), a transcription factor regulating germination, as a partner of MPK8. Mpk8 tcp14 double-mutant seeds presented a deeper dormancy at harvest than WT and mpk8, but similar to that of tcp14 seeds. MPK8 interacted with TCP14 in the nucleus in vivo and phosphorylated TCP14 in vitro. Furthermore, MPK8 enhanced TCP14 transcriptional activity when co-expressed in tobacco leaves. Nevertheless, the stimulation of TCP14 transcriptional activity by MPK8 could occur independently of TCP14 phosphorylation. The comparison of WT, mpk8 and tcp14 transcriptomes evidenced that whereas no effect was observed in dry seeds, mpk8 and tcp14 mutants presented dramatic transcriptomic alterations after imbibition with a sustained expression of genes related to seed maturation. Moreover, both mutants exhibited repression of genes involved in cell wall remodeling and cell cycle G1/S transition. As a whole, this study unraveled a role for MPK8 in promoting seed germination, and suggested that its interaction with TCP14 was critical for regulating key processes required for germination completion. es_ES
dc.description.sponsorship This work was supported by the Chinese Scholarship Council (201606690037 to WZ), CNRS, Sorbonne Universite and the LabEx Saclay Plant Sciences-SPS (ANR-10-LABX-0040-SPS). The authors acknowledge Jean Francois Gilles from the IBPS imaging core facility, which is supported by Conseil Regional Ile-de-France, for help with confocal microscopy. The authors thank Cristina Urbez (CSIC-U Politecnica de Valencia) for technical assistance. The authors thank Pr Brendan Davies (University of Leeds) for providing tcp14.4 seeds, and Dr Jean Colcombet (IPS2 Universite Paris-Saclay) for providing MPK8-pDONOR vector. es_ES
dc.language Inglés es_ES
dc.publisher Blackwell Publishing es_ES
dc.relation.ispartof The Plant Journal es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject MAP kinase 8 es_ES
dc.subject Seed es_ES
dc.subject Dormancy es_ES
dc.subject Germination es_ES
dc.subject Teosinte Branched1 es_ES
dc.subject Cycloidea es_ES
dc.subject Proliferating cell factor 14 es_ES
dc.subject Arabidopsis thaliana es_ES
dc.subject Gibberellins es_ES
dc.title The MPK8-TCP14 pathway promotes seed germination in Arabidopsis es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1111/tpj.14461 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ANR//ANR-10-LABX-0040/FR/Saclay Plant Sciences/SPS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CSC//201606690037/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.description.bibliographicCitation Zhang, W.; Cochet, F.; Ponnaiah, M.; Lebreton, S.; Matheron, L.; Pionneau, C.; Boudsocq, M.... (2019). The MPK8-TCP14 pathway promotes seed germination in Arabidopsis. The Plant Journal. 100(4):677-692. https://doi.org/10.1111/tpj.14461 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1111/tpj.14461 es_ES
dc.description.upvformatpinicio 677 es_ES
dc.description.upvformatpfin 692 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 100 es_ES
dc.description.issue 4 es_ES
dc.identifier.pmid 31325184 es_ES
dc.relation.pasarela S\406783 es_ES
dc.contributor.funder Saclay Plant Sciences es_ES
dc.contributor.funder Agence Nationale de la Recherche, Francia es_ES
dc.contributor.funder China Scholarship Council es_ES
dc.contributor.funder Université Sorbonne Paris Cité es_ES
dc.contributor.funder Centre National de la Recherche Scientifique, Francia es_ES
dc.description.references Barrôco, R. M., Van Poucke, K., Bergervoet, J. H. W., De Veylder, L., Groot, S. P. C., Inzé, D., & Engler, G. (2005). The Role of the Cell Cycle Machinery in Resumption of Postembryonic Development. Plant Physiology, 137(1), 127-140. doi:10.1104/pp.104.049361 es_ES
dc.description.references Basbouss-Serhal, I., Soubigou-Taconnat, L., Bailly, C., & Leymarie, J. (2015). Germination Potential of Dormant and Nondormant Arabidopsis Seeds Is Driven by Distinct Recruitment of Messenger RNAs to Polysomes. Plant Physiology, 168(3), 1049-1065. doi:10.1104/pp.15.00510 es_ES
dc.description.references Bassel, G. W., Lan, H., Glaab, E., Gibbs, D. J., Gerjets, T., Krasnogor, N., … Provart, N. J. (2011). Genome-wide network model capturing seed germination reveals coordinated regulation of plant cellular phase transitions. Proceedings of the National Academy of Sciences, 108(23), 9709-9714. doi:10.1073/pnas.1100958108 es_ES
dc.description.references Boudsocq, M., Droillard, M.-J., Regad, L., & Laurière, C. (2012). Characterization of Arabidopsis calcium-dependent protein kinases: activated or not by calcium? Biochemical Journal, 447(2), 291-299. doi:10.1042/bj20112072 es_ES
dc.description.references Chang, S., Puryear, J., & Cairney, J. (1993). A simple and efficient method for isolating RNA from pine trees. Plant Molecular Biology Reporter, 11(2), 113-116. doi:10.1007/bf02670468 es_ES
dc.description.references Colcombet, J., & Hirt, H. (2008). Arabidopsis MAPKs: a complex signalling network involved in multiple biological processes. Biochemical Journal, 413(2), 217-226. doi:10.1042/bj20080625 es_ES
dc.description.references Cutler, S. R., Rodriguez, P. L., Finkelstein, R. R., & Abrams, S. R. (2010). Abscisic Acid: Emergence of a Core Signaling Network. Annual Review of Plant Biology, 61(1), 651-679. doi:10.1146/annurev-arplant-042809-112122 es_ES
dc.description.references Dai, C., & Xue, H.-W. (2010). Rice early flowering1, a CKI, phosphorylates DELLA protein SLR1 to negatively regulate gibberellin signalling. The EMBO Journal, 29(11), 1916-1927. doi:10.1038/emboj.2010.75 es_ES
dc.description.references Danquah, A., de Zélicourt, A., Boudsocq, M., Neubauer, J., Frei dit Frey, N., Leonhardt, N., … Colcombet, J. (2015). Identification and characterization of an ABA-activated MAP kinase cascade inArabidopsis thaliana. The Plant Journal, 82(2), 232-244. doi:10.1111/tpj.12808 es_ES
dc.description.references Davière, J.-M., & Achard, P. (2016). A Pivotal Role of DELLAs in Regulating Multiple Hormone Signals. Molecular Plant, 9(1), 10-20. doi:10.1016/j.molp.2015.09.011 es_ES
dc.description.references Davière, J.-M., Wild, M., Regnault, T., Baumberger, N., Eisler, H., Genschik, P., & Achard, P. (2014). Class I TCP-DELLA Interactions in Inflorescence Shoot Apex Determine Plant Height. Current Biology, 24(16), 1923-1928. doi:10.1016/j.cub.2014.07.012 es_ES
dc.description.references Dóczi, R., & Bögre, L. (2018). The Quest for MAP Kinase Substrates: Gaining Momentum. Trends in Plant Science, 23(10), 918-932. doi:10.1016/j.tplants.2018.08.002 es_ES
dc.description.references Edgar, R. (2002). Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Research, 30(1), 207-210. doi:10.1093/nar/30.1.207 es_ES
dc.description.references Finkelstein, R., Reeves, W., Ariizumi, T., & Steber, C. (2008). Molecular Aspects of Seed Dormancy. Annual Review of Plant Biology, 59(1), 387-415. doi:10.1146/annurev.arplant.59.032607.092740 es_ES
dc.description.references Fujii, H., & Zhu, J.-K. (2009). Arabidopsis mutant deficient in 3 abscisic acid-activated protein kinases reveals critical roles in growth, reproduction, and stress. Proceedings of the National Academy of Sciences, 106(20), 8380-8385. doi:10.1073/pnas.0903144106 es_ES
dc.description.references Fujii, H., Chinnusamy, V., Rodrigues, A., Rubio, S., Antoni, R., Park, S.-Y., … Zhu, J.-K. (2009). In vitro reconstitution of an abscisic acid signalling pathway. Nature, 462(7273), 660-664. doi:10.1038/nature08599 es_ES
dc.description.references Gagnot, S., Tamby, J.-P., Martin-Magniette, M.-L., Bitton, F., Taconnat, L., Balzergue, S., … Brunaud, V. (2007). CATdb: a public access to Arabidopsis transcriptome data from the URGV-CATMA platform. Nucleic Acids Research, 36(Database), D986-D990. doi:10.1093/nar/gkm757 es_ES
dc.description.references García-Alvarez, G., Ventura, V., Ros, O., Aligué, R., Gil, J., & Tauler, A. (2007). Glycogen synthase kinase-3β binds to E2F1 and regulates its transcriptional activity. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1773(3), 375-382. doi:10.1016/j.bbamcr.2006.09.015 es_ES
dc.description.references GRAEBER, K., NAKABAYASHI, K., MIATTON, E., LEUBNER-METZGER, G., & SOPPE, W. J. J. (2012). Molecular mechanisms of seed dormancy. Plant, Cell & Environment, 35(10), 1769-1786. doi:10.1111/j.1365-3040.2012.02542.x es_ES
dc.description.references Hussain, A., Cao, D., Cheng, H., Wen, Z., & Peng, J. (2005). Identification of the conserved serine/threonine residues important for gibberellin-sensitivity of Arabidopsis RGL2 protein. The Plant Journal, 44(1), 88-99. doi:10.1111/j.1365-313x.2005.02512.x es_ES
dc.description.references Kieffer, M., Master, V., Waites, R., & Davies, B. (2011). TCP14 and TCP15 affect internode length and leaf shape in Arabidopsis. The Plant Journal, 68(1), 147-158. doi:10.1111/j.1365-313x.2011.04674.x es_ES
dc.description.references Kim, S. H., Son, G. H., Bhattacharjee, S., Kim, H. J., Nam, J. C., Nguyen, P. D. T., … Gassmann, W. (2014). The Arabidopsis immune adaptor SRFR1 interacts with TCP transcription factors that redundantly contribute to effector-triggered immunity. The Plant Journal, 78(6), 978-989. doi:10.1111/tpj.12527 es_ES
dc.description.references Kung, J. E., & Jura, N. (2016). Structural Basis for the Non-catalytic Functions of Protein Kinases. Structure, 24(1), 7-24. doi:10.1016/j.str.2015.10.020 es_ES
dc.description.references Langella, O., Valot, B., Balliau, T., Blein-Nicolas, M., Bonhomme, L., & Zivy, M. (2016). X!TandemPipeline: A Tool to Manage Sequence Redundancy for Protein Inference and Phosphosite Identification. Journal of Proteome Research, 16(2), 494-503. doi:10.1021/acs.jproteome.6b00632 es_ES
dc.description.references Lee, S., Lee, M. H., Kim, J.-I., & Kim, S. Y. (2014). Arabidopsis Putative MAP Kinase Kinase Kinases Raf10 and Raf11 are Positive Regulators of Seed Dormancy and ABA Response. Plant and Cell Physiology, 56(1), 84-97. doi:10.1093/pcp/pcu148 es_ES
dc.description.references López-Bucio, J. S., Dubrovsky, J. G., Raya-González, J., Ugartechea-Chirino, Y., López-Bucio, J., de Luna-Valdez, L. A., … Guevara-García, A. A. (2013). Arabidopsis thaliana mitogen-activated protein kinase 6 is involved in seed formation and modulation of primary and lateral root development. Journal of Experimental Botany, 65(1), 169-183. doi:10.1093/jxb/ert368 es_ES
dc.description.references Matheron, L., van den Toorn, H., Heck, A. J. R., & Mohammed, S. (2014). Characterization of Biases in Phosphopeptide Enrichment by Ti4+-Immobilized Metal Affinity Chromatography and TiO2 Using a Massive Synthetic Library and Human Cell Digests. Analytical Chemistry, 86(16), 8312-8320. doi:10.1021/ac501803z es_ES
dc.description.references Nagy, S. K., Darula, Z., Kállai, B. M., Bögre, L., Bánhegyi, G., Medzihradszky, K. F., … Mészáros, T. (2015). Activation of AtMPK9 through autophosphorylation that makes it independent of the canonical MAPK cascades. Biochemical Journal, 467(1), 167-175. doi:10.1042/bj20141176 es_ES
dc.description.references Nakashima, K., Fujita, Y., Kanamori, N., Katagiri, T., Umezawa, T., Kidokoro, S., … Yamaguchi-Shinozaki, K. (2009). Three Arabidopsis SnRK2 Protein Kinases, SRK2D/SnRK2.2, SRK2E/SnRK2.6/OST1 and SRK2I/SnRK2.3, Involved in ABA Signaling are Essential for the Control of Seed Development and Dormancy. Plant and Cell Physiology, 50(7), 1345-1363. doi:10.1093/pcp/pcp083 es_ES
dc.description.references Nguyen, X. C., Hoang, M. H. T., Kim, H. S., Lee, K., Liu, X.-M., Kim, S. H., … Chung, W. S. (2012). Phosphorylation of the transcriptional regulator MYB44 by mitogen activated protein kinase regulates Arabidopsis seed germination. Biochemical and Biophysical Research Communications, 423(4), 703-708. doi:10.1016/j.bbrc.2012.06.019 es_ES
dc.description.references Nicolas, M., & Cubas, P. (2016). TCP factors: new kids on the signaling block. Current Opinion in Plant Biology, 33, 33-41. doi:10.1016/j.pbi.2016.05.006 es_ES
dc.description.references Ogawa, M., Hanada, A., Yamauchi, Y., Kuwahara, A., Kamiya, Y., & Yamaguchi, S. (2003). Gibberellin Biosynthesis and Response during Arabidopsis Seed Germination[W]. The Plant Cell, 15(7), 1591-1604. doi:10.1105/tpc.011650 es_ES
dc.description.references Penfield, S. (2017). Seed dormancy and germination. Current Biology, 27(17), R874-R878. doi:10.1016/j.cub.2017.05.050 es_ES
dc.description.references Popescu, S. C., Popescu, G. V., Bachan, S., Zhang, Z., Gerstein, M., Snyder, M., & Dinesh-Kumar, S. P. (2008). MAPK target networks in Arabidopsis thaliana revealed using functional protein microarrays. Genes & Development, 23(1), 80-92. doi:10.1101/gad.1740009 es_ES
dc.description.references Resentini, F., Felipo-Benavent, A., Colombo, L., Blázquez, M. A., Alabadí, D., & Masiero, S. (2015). TCP14 and TCP15 Mediate the Promotion of Seed Germination by Gibberellins in Arabidopsis thaliana. Molecular Plant, 8(3), 482-485. doi:10.1016/j.molp.2014.11.018 es_ES
dc.description.references Rueda-Romero, P., Barrero-Sicilia, C., Gómez-Cadenas, A., Carbonero, P., & Oñate-Sánchez, L. (2011). Arabidopsis thaliana DOF6 negatively affects germination in non-after-ripened seeds and interacts with TCP14. Journal of Experimental Botany, 63(5), 1937-1949. doi:10.1093/jxb/err388 es_ES
dc.description.references Sechet, J., Frey, A., Effroy-Cuzzi, D., Berger, A., Perreau, F., Cueff, G., … Marion-Poll, A. (2016). Xyloglucan Metabolism Differentially Impacts the Cell Wall Characteristics of the Endosperm and Embryo during Arabidopsis Seed Germination. Plant Physiology, 170(3), 1367-1380. doi:10.1104/pp.15.01312 es_ES
dc.description.references Shu, K., Liu, X., Xie, Q., & He, Z. (2016). Two Faces of One Seed: Hormonal Regulation of Dormancy and Germination. Molecular Plant, 9(1), 34-45. doi:10.1016/j.molp.2015.08.010 es_ES
dc.description.references Siloto, R. M. P., Findlay, K., Lopez-Villalobos, A., Yeung, E. C., Nykiforuk, C. L., & Moloney, M. M. (2006). The Accumulation of Oleosins Determines the Size of Seed Oilbodies inArabidopsis. The Plant Cell, 18(8), 1961-1974. doi:10.1105/tpc.106.041269 es_ES
dc.description.references Takahashi, F., Mizoguchi, T., Yoshida, R., Ichimura, K., & Shinozaki, K. (2011). Calmodulin-Dependent Activation of MAP Kinase for ROS Homeostasis in Arabidopsis. Molecular Cell, 41(6), 649-660. doi:10.1016/j.molcel.2011.02.029 es_ES
dc.description.references Tatematsu, K., Nakabayashi, K., Kamiya, Y., & Nambara, E. (2008). Transcription factor AtTCP14 regulates embryonic growth potential during seed germination inArabidopsis thaliana. The Plant Journal, 53(1), 42-52. doi:10.1111/j.1365-313x.2007.03308.x es_ES
dc.description.references Torada, A., Koike, M., Ogawa, T., Takenouchi, Y., Tadamura, K., Wu, J., … Ogihara, Y. (2016). A Causal Gene for Seed Dormancy on Wheat Chromosome 4A Encodes a MAP Kinase Kinase. Current Biology, 26(6), 782-787. doi:10.1016/j.cub.2016.01.063 es_ES
dc.description.references Umezawa, T., Sugiyama, N., Mizoguchi, M., Hayashi, S., Myouga, F., Yamaguchi-Shinozaki, K., … Shinozaki, K. (2009). Type 2C protein phosphatases directly regulate abscisic acid-activated protein kinases in Arabidopsis. Proceedings of the National Academy of Sciences, 106(41), 17588-17593. doi:10.1073/pnas.0907095106 es_ES
dc.description.references Valsecchi, I., Guittard-Crilat, E., Maldiney, R., Habricot, Y., Lignon, S., Lebrun, R., … Lebreton, S. (2013). The intrinsically disordered C-terminal region of Arabidopsis thaliana TCP8 transcription factor acts both as a transactivation and self-assembly domain. Molecular BioSystems, 9(9), 2282. doi:10.1039/c3mb70128j es_ES
dc.description.references Velappan, Y., Signorelli, S., & Considine, M. J. (2017). Cell cycle arrest in plants: what distinguishes quiescence, dormancy and differentiated G1? Annals of Botany, 120(4), 495-509. doi:10.1093/aob/mcx082 es_ES
dc.description.references Vizcaíno, J. A., Côté, R. G., Csordas, A., Dianes, J. A., Fabregat, A., Foster, J. M., … Hermjakob, H. (2012). The Proteomics Identifications (PRIDE) database and associated tools: status in 2013. Nucleic Acids Research, 41(D1), D1063-D1069. doi:10.1093/nar/gks1262 es_ES
dc.description.references Xu, J., & Zhang, S. (2015). Mitogen-activated protein kinase cascades in signaling plant growth and development. Trends in Plant Science, 20(1), 56-64. doi:10.1016/j.tplants.2014.10.001 es_ES
dc.description.references Yang, L., Teixeira, P. J. P. L., Biswas, S., Finkel, O. M., He, Y., Salas-Gonzalez, I., … Dangl, J. L. (2017). Pseudomonas syringae Type III Effector HopBB1 Promotes Host Transcriptional Repressor Degradation to Regulate Phytohormone Responses and Virulence. Cell Host & Microbe, 21(2), 156-168. doi:10.1016/j.chom.2017.01.003 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem