- -

The MPK8-TCP14 pathway promotes seed germination in Arabidopsis

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

The MPK8-TCP14 pathway promotes seed germination in Arabidopsis

Mostrar el registro completo del ítem

Zhang, W.; Cochet, F.; Ponnaiah, M.; Lebreton, S.; Matheron, L.; Pionneau, C.; Boudsocq, M.... (2019). The MPK8-TCP14 pathway promotes seed germination in Arabidopsis. The Plant Journal. 100(4):677-692. https://doi.org/10.1111/tpj.14461

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/163980

Ficheros en el ítem

Metadatos del ítem

Título: The MPK8-TCP14 pathway promotes seed germination in Arabidopsis
Autor: Zhang, Wei Cochet, Francoise Ponnaiah, Maharajah Lebreton, Sandrine Matheron, Lucrece Pionneau, Cedric Boudsocq, Marie Resentini, Francesca Huguet, Stephanie BLAZQUEZ RODRIGUEZ, MIGUEL ANGEL Bailly, Christophe Puyaubert, Juliette Baudouin, Emmanuel
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Fecha difusión:
Resumen:
[EN] The accurate control of dormancy release and germination is critical for successful plantlet establishment. Investigations in cereals hypothesized a crucial role for specific MAP kinase (MPK) pathways in promoting ...[+]
Palabras clave: MAP kinase 8 , Seed , Dormancy , Germination , Teosinte Branched1 , Cycloidea , Proliferating cell factor 14 , Arabidopsis thaliana , Gibberellins
Derechos de uso: Cerrado
Fuente:
The Plant Journal. (issn: 0960-7412 )
DOI: 10.1111/tpj.14461
Editorial:
Blackwell Publishing
Versión del editor: https://doi.org/10.1111/tpj.14461
Código del Proyecto:
info:eu-repo/grantAgreement/ANR//ANR-10-LABX-0040/FR/Saclay Plant Sciences/SPS/
info:eu-repo/grantAgreement/CSC//201606690037/
Agradecimientos:
This work was supported by the Chinese Scholarship Council (201606690037 to WZ), CNRS, Sorbonne Universite and the LabEx Saclay Plant Sciences-SPS (ANR-10-LABX-0040-SPS). The authors acknowledge Jean Francois Gilles from ...[+]
Tipo: Artículo

References

Barrôco, R. M., Van Poucke, K., Bergervoet, J. H. W., De Veylder, L., Groot, S. P. C., Inzé, D., & Engler, G. (2005). The Role of the Cell Cycle Machinery in Resumption of Postembryonic Development. Plant Physiology, 137(1), 127-140. doi:10.1104/pp.104.049361

Basbouss-Serhal, I., Soubigou-Taconnat, L., Bailly, C., & Leymarie, J. (2015). Germination Potential of Dormant and Nondormant Arabidopsis Seeds Is Driven by Distinct Recruitment of Messenger RNAs to Polysomes. Plant Physiology, 168(3), 1049-1065. doi:10.1104/pp.15.00510

Bassel, G. W., Lan, H., Glaab, E., Gibbs, D. J., Gerjets, T., Krasnogor, N., … Provart, N. J. (2011). Genome-wide network model capturing seed germination reveals coordinated regulation of plant cellular phase transitions. Proceedings of the National Academy of Sciences, 108(23), 9709-9714. doi:10.1073/pnas.1100958108 [+]
Barrôco, R. M., Van Poucke, K., Bergervoet, J. H. W., De Veylder, L., Groot, S. P. C., Inzé, D., & Engler, G. (2005). The Role of the Cell Cycle Machinery in Resumption of Postembryonic Development. Plant Physiology, 137(1), 127-140. doi:10.1104/pp.104.049361

Basbouss-Serhal, I., Soubigou-Taconnat, L., Bailly, C., & Leymarie, J. (2015). Germination Potential of Dormant and Nondormant Arabidopsis Seeds Is Driven by Distinct Recruitment of Messenger RNAs to Polysomes. Plant Physiology, 168(3), 1049-1065. doi:10.1104/pp.15.00510

Bassel, G. W., Lan, H., Glaab, E., Gibbs, D. J., Gerjets, T., Krasnogor, N., … Provart, N. J. (2011). Genome-wide network model capturing seed germination reveals coordinated regulation of plant cellular phase transitions. Proceedings of the National Academy of Sciences, 108(23), 9709-9714. doi:10.1073/pnas.1100958108

Boudsocq, M., Droillard, M.-J., Regad, L., & Laurière, C. (2012). Characterization of Arabidopsis calcium-dependent protein kinases: activated or not by calcium? Biochemical Journal, 447(2), 291-299. doi:10.1042/bj20112072

Chang, S., Puryear, J., & Cairney, J. (1993). A simple and efficient method for isolating RNA from pine trees. Plant Molecular Biology Reporter, 11(2), 113-116. doi:10.1007/bf02670468

Colcombet, J., & Hirt, H. (2008). Arabidopsis MAPKs: a complex signalling network involved in multiple biological processes. Biochemical Journal, 413(2), 217-226. doi:10.1042/bj20080625

Cutler, S. R., Rodriguez, P. L., Finkelstein, R. R., & Abrams, S. R. (2010). Abscisic Acid: Emergence of a Core Signaling Network. Annual Review of Plant Biology, 61(1), 651-679. doi:10.1146/annurev-arplant-042809-112122

Dai, C., & Xue, H.-W. (2010). Rice early flowering1, a CKI, phosphorylates DELLA protein SLR1 to negatively regulate gibberellin signalling. The EMBO Journal, 29(11), 1916-1927. doi:10.1038/emboj.2010.75

Danquah, A., de Zélicourt, A., Boudsocq, M., Neubauer, J., Frei dit Frey, N., Leonhardt, N., … Colcombet, J. (2015). Identification and characterization of an ABA-activated MAP kinase cascade inArabidopsis thaliana. The Plant Journal, 82(2), 232-244. doi:10.1111/tpj.12808

Davière, J.-M., & Achard, P. (2016). A Pivotal Role of DELLAs in Regulating Multiple Hormone Signals. Molecular Plant, 9(1), 10-20. doi:10.1016/j.molp.2015.09.011

Davière, J.-M., Wild, M., Regnault, T., Baumberger, N., Eisler, H., Genschik, P., & Achard, P. (2014). Class I TCP-DELLA Interactions in Inflorescence Shoot Apex Determine Plant Height. Current Biology, 24(16), 1923-1928. doi:10.1016/j.cub.2014.07.012

Dóczi, R., & Bögre, L. (2018). The Quest for MAP Kinase Substrates: Gaining Momentum. Trends in Plant Science, 23(10), 918-932. doi:10.1016/j.tplants.2018.08.002

Edgar, R. (2002). Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Research, 30(1), 207-210. doi:10.1093/nar/30.1.207

Finkelstein, R., Reeves, W., Ariizumi, T., & Steber, C. (2008). Molecular Aspects of Seed Dormancy. Annual Review of Plant Biology, 59(1), 387-415. doi:10.1146/annurev.arplant.59.032607.092740

Fujii, H., & Zhu, J.-K. (2009). Arabidopsis mutant deficient in 3 abscisic acid-activated protein kinases reveals critical roles in growth, reproduction, and stress. Proceedings of the National Academy of Sciences, 106(20), 8380-8385. doi:10.1073/pnas.0903144106

Fujii, H., Chinnusamy, V., Rodrigues, A., Rubio, S., Antoni, R., Park, S.-Y., … Zhu, J.-K. (2009). In vitro reconstitution of an abscisic acid signalling pathway. Nature, 462(7273), 660-664. doi:10.1038/nature08599

Gagnot, S., Tamby, J.-P., Martin-Magniette, M.-L., Bitton, F., Taconnat, L., Balzergue, S., … Brunaud, V. (2007). CATdb: a public access to Arabidopsis transcriptome data from the URGV-CATMA platform. Nucleic Acids Research, 36(Database), D986-D990. doi:10.1093/nar/gkm757

García-Alvarez, G., Ventura, V., Ros, O., Aligué, R., Gil, J., & Tauler, A. (2007). Glycogen synthase kinase-3β binds to E2F1 and regulates its transcriptional activity. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1773(3), 375-382. doi:10.1016/j.bbamcr.2006.09.015

GRAEBER, K., NAKABAYASHI, K., MIATTON, E., LEUBNER-METZGER, G., & SOPPE, W. J. J. (2012). Molecular mechanisms of seed dormancy. Plant, Cell & Environment, 35(10), 1769-1786. doi:10.1111/j.1365-3040.2012.02542.x

Hussain, A., Cao, D., Cheng, H., Wen, Z., & Peng, J. (2005). Identification of the conserved serine/threonine residues important for gibberellin-sensitivity of Arabidopsis RGL2 protein. The Plant Journal, 44(1), 88-99. doi:10.1111/j.1365-313x.2005.02512.x

Kieffer, M., Master, V., Waites, R., & Davies, B. (2011). TCP14 and TCP15 affect internode length and leaf shape in Arabidopsis. The Plant Journal, 68(1), 147-158. doi:10.1111/j.1365-313x.2011.04674.x

Kim, S. H., Son, G. H., Bhattacharjee, S., Kim, H. J., Nam, J. C., Nguyen, P. D. T., … Gassmann, W. (2014). The Arabidopsis immune adaptor SRFR1 interacts with TCP transcription factors that redundantly contribute to effector-triggered immunity. The Plant Journal, 78(6), 978-989. doi:10.1111/tpj.12527

Kung, J. E., & Jura, N. (2016). Structural Basis for the Non-catalytic Functions of Protein Kinases. Structure, 24(1), 7-24. doi:10.1016/j.str.2015.10.020

Langella, O., Valot, B., Balliau, T., Blein-Nicolas, M., Bonhomme, L., & Zivy, M. (2016). X!TandemPipeline: A Tool to Manage Sequence Redundancy for Protein Inference and Phosphosite Identification. Journal of Proteome Research, 16(2), 494-503. doi:10.1021/acs.jproteome.6b00632

Lee, S., Lee, M. H., Kim, J.-I., & Kim, S. Y. (2014). Arabidopsis Putative MAP Kinase Kinase Kinases Raf10 and Raf11 are Positive Regulators of Seed Dormancy and ABA Response. Plant and Cell Physiology, 56(1), 84-97. doi:10.1093/pcp/pcu148

López-Bucio, J. S., Dubrovsky, J. G., Raya-González, J., Ugartechea-Chirino, Y., López-Bucio, J., de Luna-Valdez, L. A., … Guevara-García, A. A. (2013). Arabidopsis thaliana mitogen-activated protein kinase 6 is involved in seed formation and modulation of primary and lateral root development. Journal of Experimental Botany, 65(1), 169-183. doi:10.1093/jxb/ert368

Matheron, L., van den Toorn, H., Heck, A. J. R., & Mohammed, S. (2014). Characterization of Biases in Phosphopeptide Enrichment by Ti4+-Immobilized Metal Affinity Chromatography and TiO2 Using a Massive Synthetic Library and Human Cell Digests. Analytical Chemistry, 86(16), 8312-8320. doi:10.1021/ac501803z

Nagy, S. K., Darula, Z., Kállai, B. M., Bögre, L., Bánhegyi, G., Medzihradszky, K. F., … Mészáros, T. (2015). Activation of AtMPK9 through autophosphorylation that makes it independent of the canonical MAPK cascades. Biochemical Journal, 467(1), 167-175. doi:10.1042/bj20141176

Nakashima, K., Fujita, Y., Kanamori, N., Katagiri, T., Umezawa, T., Kidokoro, S., … Yamaguchi-Shinozaki, K. (2009). Three Arabidopsis SnRK2 Protein Kinases, SRK2D/SnRK2.2, SRK2E/SnRK2.6/OST1 and SRK2I/SnRK2.3, Involved in ABA Signaling are Essential for the Control of Seed Development and Dormancy. Plant and Cell Physiology, 50(7), 1345-1363. doi:10.1093/pcp/pcp083

Nguyen, X. C., Hoang, M. H. T., Kim, H. S., Lee, K., Liu, X.-M., Kim, S. H., … Chung, W. S. (2012). Phosphorylation of the transcriptional regulator MYB44 by mitogen activated protein kinase regulates Arabidopsis seed germination. Biochemical and Biophysical Research Communications, 423(4), 703-708. doi:10.1016/j.bbrc.2012.06.019

Nicolas, M., & Cubas, P. (2016). TCP factors: new kids on the signaling block. Current Opinion in Plant Biology, 33, 33-41. doi:10.1016/j.pbi.2016.05.006

Ogawa, M., Hanada, A., Yamauchi, Y., Kuwahara, A., Kamiya, Y., & Yamaguchi, S. (2003). Gibberellin Biosynthesis and Response during Arabidopsis Seed Germination[W]. The Plant Cell, 15(7), 1591-1604. doi:10.1105/tpc.011650

Penfield, S. (2017). Seed dormancy and germination. Current Biology, 27(17), R874-R878. doi:10.1016/j.cub.2017.05.050

Popescu, S. C., Popescu, G. V., Bachan, S., Zhang, Z., Gerstein, M., Snyder, M., & Dinesh-Kumar, S. P. (2008). MAPK target networks in Arabidopsis thaliana revealed using functional protein microarrays. Genes & Development, 23(1), 80-92. doi:10.1101/gad.1740009

Resentini, F., Felipo-Benavent, A., Colombo, L., Blázquez, M. A., Alabadí, D., & Masiero, S. (2015). TCP14 and TCP15 Mediate the Promotion of Seed Germination by Gibberellins in Arabidopsis thaliana. Molecular Plant, 8(3), 482-485. doi:10.1016/j.molp.2014.11.018

Rueda-Romero, P., Barrero-Sicilia, C., Gómez-Cadenas, A., Carbonero, P., & Oñate-Sánchez, L. (2011). Arabidopsis thaliana DOF6 negatively affects germination in non-after-ripened seeds and interacts with TCP14. Journal of Experimental Botany, 63(5), 1937-1949. doi:10.1093/jxb/err388

Sechet, J., Frey, A., Effroy-Cuzzi, D., Berger, A., Perreau, F., Cueff, G., … Marion-Poll, A. (2016). Xyloglucan Metabolism Differentially Impacts the Cell Wall Characteristics of the Endosperm and Embryo during Arabidopsis Seed Germination. Plant Physiology, 170(3), 1367-1380. doi:10.1104/pp.15.01312

Shu, K., Liu, X., Xie, Q., & He, Z. (2016). Two Faces of One Seed: Hormonal Regulation of Dormancy and Germination. Molecular Plant, 9(1), 34-45. doi:10.1016/j.molp.2015.08.010

Siloto, R. M. P., Findlay, K., Lopez-Villalobos, A., Yeung, E. C., Nykiforuk, C. L., & Moloney, M. M. (2006). The Accumulation of Oleosins Determines the Size of Seed Oilbodies inArabidopsis. The Plant Cell, 18(8), 1961-1974. doi:10.1105/tpc.106.041269

Takahashi, F., Mizoguchi, T., Yoshida, R., Ichimura, K., & Shinozaki, K. (2011). Calmodulin-Dependent Activation of MAP Kinase for ROS Homeostasis in Arabidopsis. Molecular Cell, 41(6), 649-660. doi:10.1016/j.molcel.2011.02.029

Tatematsu, K., Nakabayashi, K., Kamiya, Y., & Nambara, E. (2008). Transcription factor AtTCP14 regulates embryonic growth potential during seed germination inArabidopsis thaliana. The Plant Journal, 53(1), 42-52. doi:10.1111/j.1365-313x.2007.03308.x

Torada, A., Koike, M., Ogawa, T., Takenouchi, Y., Tadamura, K., Wu, J., … Ogihara, Y. (2016). A Causal Gene for Seed Dormancy on Wheat Chromosome 4A Encodes a MAP Kinase Kinase. Current Biology, 26(6), 782-787. doi:10.1016/j.cub.2016.01.063

Umezawa, T., Sugiyama, N., Mizoguchi, M., Hayashi, S., Myouga, F., Yamaguchi-Shinozaki, K., … Shinozaki, K. (2009). Type 2C protein phosphatases directly regulate abscisic acid-activated protein kinases in Arabidopsis. Proceedings of the National Academy of Sciences, 106(41), 17588-17593. doi:10.1073/pnas.0907095106

Valsecchi, I., Guittard-Crilat, E., Maldiney, R., Habricot, Y., Lignon, S., Lebrun, R., … Lebreton, S. (2013). The intrinsically disordered C-terminal region of Arabidopsis thaliana TCP8 transcription factor acts both as a transactivation and self-assembly domain. Molecular BioSystems, 9(9), 2282. doi:10.1039/c3mb70128j

Velappan, Y., Signorelli, S., & Considine, M. J. (2017). Cell cycle arrest in plants: what distinguishes quiescence, dormancy and differentiated G1? Annals of Botany, 120(4), 495-509. doi:10.1093/aob/mcx082

Vizcaíno, J. A., Côté, R. G., Csordas, A., Dianes, J. A., Fabregat, A., Foster, J. M., … Hermjakob, H. (2012). The Proteomics Identifications (PRIDE) database and associated tools: status in 2013. Nucleic Acids Research, 41(D1), D1063-D1069. doi:10.1093/nar/gks1262

Xu, J., & Zhang, S. (2015). Mitogen-activated protein kinase cascades in signaling plant growth and development. Trends in Plant Science, 20(1), 56-64. doi:10.1016/j.tplants.2014.10.001

Yang, L., Teixeira, P. J. P. L., Biswas, S., Finkel, O. M., He, Y., Salas-Gonzalez, I., … Dangl, J. L. (2017). Pseudomonas syringae Type III Effector HopBB1 Promotes Host Transcriptional Repressor Degradation to Regulate Phytohormone Responses and Virulence. Cell Host & Microbe, 21(2), 156-168. doi:10.1016/j.chom.2017.01.003

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem