- -

Interpretation of the Acoustic Black Hole effect based on the concept of critical coupling

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Interpretation of the Acoustic Black Hole effect based on the concept of critical coupling

Mostrar el registro completo del ítem

Leng, J.; Romero García, V.; Pelat, A.; Picó Vila, R.; Groby, J.; Gautier, F. (2020). Interpretation of the Acoustic Black Hole effect based on the concept of critical coupling. Journal of Sound and Vibration. 471:1-10. https://doi.org/10.1016/j.jsv.2020.115199

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/163982

Ficheros en el ítem

Metadatos del ítem

Título: Interpretation of the Acoustic Black Hole effect based on the concept of critical coupling
Autor: Leng, J. Romero García, Vicente Pelat, A. Picó Vila, Rubén Groby, J.P. GAUTIER, FRANÇOIS
Entidad UPV: Universitat Politècnica de València. Instituto Universitario de Matemática Pura y Aplicada - Institut Universitari de Matemàtica Pura i Aplicada
Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Fecha difusión:
Resumen:
[EN] An Acoustic Black Hole (ABH) in a one-dimensional (1D) beam is a passive vibration damping device based on a local reduction of the beam thickness attached to a thin layer of attenuating material. This work aims at ...[+]
Palabras clave: Vibration damper , Acoustic Black Hole effect , Reflection coefficient , Critical coupling
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Journal of Sound and Vibration. (issn: 0022-460X )
DOI: 10.1016/j.jsv.2020.115199
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.jsv.2020.115199
Código del Proyecto:
info:eu-repo/grantAgreement/COST//CA15125/EU/Designs for Noise Reducing Materials and Structures (DENORMS)/
info:eu-repo/grantAgreement/ANR//ANR-17-CE08-0035/FR/Augmented Acoustic Black Holes : conception of light, stiff and non-resonant pannels/eTNAA/
info:eu-repo/grantAgreement/MINECO//FIS2015-65998-C2-2-P/ES/ONDAS ACUSTICAS EN CRISTALES, MEDIOS ESTRUCTURADOS Y METAMATERIALES/
info:eu-repo/grantAgreement/GVA//AICO%2F2016%2F060/
Agradecimientos:
This work has been funded by the RFI Le Mans Acoustic (Region Pays de la Loire) within the framework of the Metaplaque project. This article is based on work from COST action DENORMS CA 15125, supported by COST (European ...[+]
Tipo: Artículo

References

Lee, J. Y., & Jeon, W. (2017). Vibration damping using a spiral acoustic black holea). The Journal of the Acoustical Society of America, 141(3), 1437-1445. doi:10.1121/1.4976687

Zhou, T., Tang, L., Ji, H., Qiu, J., & Cheng, L. (2017). Dynamic and Static Properties of Double-Layered Compound Acoustic Black Hole Structures. International Journal of Applied Mechanics, 09(05), 1750074. doi:10.1142/s1758825117500740

Zhou, T., & Cheng, L. (2018). A resonant beam damper tailored with Acoustic Black Hole features for broadband vibration reduction. Journal of Sound and Vibration, 430, 174-184. doi:10.1016/j.jsv.2018.05.047 [+]
Lee, J. Y., & Jeon, W. (2017). Vibration damping using a spiral acoustic black holea). The Journal of the Acoustical Society of America, 141(3), 1437-1445. doi:10.1121/1.4976687

Zhou, T., Tang, L., Ji, H., Qiu, J., & Cheng, L. (2017). Dynamic and Static Properties of Double-Layered Compound Acoustic Black Hole Structures. International Journal of Applied Mechanics, 09(05), 1750074. doi:10.1142/s1758825117500740

Zhou, T., & Cheng, L. (2018). A resonant beam damper tailored with Acoustic Black Hole features for broadband vibration reduction. Journal of Sound and Vibration, 430, 174-184. doi:10.1016/j.jsv.2018.05.047

Climente, A., Torrent, D., & Sánchez-Dehesa, J. (2013). Omnidirectional broadband insulating device for flexural waves in thin plates. Journal of Applied Physics, 114(21), 214903. doi:10.1063/1.4839375

Climente, A., Torrent, D., & Sánchez-Dehesa, J. (2014). Gradient index lenses for flexural waves based on thickness variations. Applied Physics Letters, 105(6), 064101. doi:10.1063/1.4893153

Zhu, H., & Semperlotti, F. (2017). Two-dimensional structure-embedded acoustic lenses based on periodic acoustic black holes. Journal of Applied Physics, 122(6), 065104. doi:10.1063/1.4998524

Tang, L., & Cheng, L. (2017). Enhanced Acoustic Black Hole effect in beams with a modified thickness profile and extended platform. Journal of Sound and Vibration, 391, 116-126. doi:10.1016/j.jsv.2016.11.010

Deng, J., Zheng, L., Zeng, P., Zuo, Y., & Guasch, O. (2019). Passive constrained viscoelastic layers to improve the efficiency of truncated acoustic black holes in beams. Mechanical Systems and Signal Processing, 118, 461-476. doi:10.1016/j.ymssp.2018.08.053

Denis, V., Pelat, A., Touzé, C., & Gautier, F. (2017). Improvement of the acoustic black hole effect by using energy transfer due to geometric nonlinearity. International Journal of Non-Linear Mechanics, 94, 134-145. doi:10.1016/j.ijnonlinmec.2016.11.012

Li, H., Touzé, C., Pelat, A., Gautier, F., & Kong, X. (2019). A vibro-impact acoustic black hole for passive damping of flexural beam vibrations. Journal of Sound and Vibration, 450, 28-46. doi:10.1016/j.jsv.2019.03.004

Romero-García, V., Theocharis, G., Richoux, O., & Pagneux, V. (2016). Use of complex frequency plane to design broadband and sub-wavelength absorbers. The Journal of the Acoustical Society of America, 139(6), 3395-3403. doi:10.1121/1.4950708

J. Leng, F. Gautier, A. Pelat, R. Pic, J.-P. Groby, V. Romero-Garca, Limits of flexural wave absorption by open lossy resonators: reflection and transmission problems, New J. Phys. 21 (053003).

Yariv, A. (2000). Universal relations for coupling of optical power between microresonators and dielectric waveguides. Electronics Letters, 36(4), 321. doi:10.1049/el:20000340

Piper, J. R., & Fan, S. (2014). Total Absorption in a Graphene Monolayer in the Optical Regime by Critical Coupling with a Photonic Crystal Guided Resonance. ACS Photonics, 1(4), 347-353. doi:10.1021/ph400090p

Jiménez, N., Romero-García, V., Pagneux, V., & Groby, J.-P. (2017). Rainbow-trapping absorbers: Broadband, perfect and asymmetric sound absorption by subwavelength panels for transmission problems. Scientific Reports, 7(1). doi:10.1038/s41598-017-13706-4

Groby, J.-P., Pommier, R., & Aurégan, Y. (2016). Use of slow sound to design perfect and broadband passive sound absorbing materials. The Journal of the Acoustical Society of America, 139(4), 1660-1671. doi:10.1121/1.4945101

Krylov, V. V., & Tilman, F. J. B. S. (2004). Acoustic ‘black holes’ for flexural waves as effective vibration dampers. Journal of Sound and Vibration, 274(3-5), 605-619. doi:10.1016/j.jsv.2003.05.010

Krylov, V. V., & Winward, R. E. T. B. (2007). Experimental investigation of the acoustic black hole effect for flexural waves in tapered plates. Journal of Sound and Vibration, 300(1-2), 43-49. doi:10.1016/j.jsv.2006.07.035

Denis, V., Gautier, F., Pelat, A., & Poittevin, J. (2015). Measurement and modelling of the reflection coefficient of an Acoustic Black Hole termination. Journal of Sound and Vibration, 349, 67-79. doi:10.1016/j.jsv.2015.03.043

Georgiev, V. B., Cuenca, J., Gautier, F., Simon, L., & Krylov, V. V. (2011). Damping of structural vibrations in beams and elliptical plates using the acoustic black hole effect. Journal of Sound and Vibration, 330(11), 2497-2508. doi:10.1016/j.jsv.2010.12.001

Denis, V., Pelat, A., & Gautier, F. (2016). Scattering effects induced by imperfections on an acoustic black hole placed at a structural waveguide termination. Journal of Sound and Vibration, 362, 56-71. doi:10.1016/j.jsv.2015.10.016

Denis, V., Pelat, A., Gautier, F., & Elie, B. (2014). Modal Overlap Factor of a beam with an acoustic black hole termination. Journal of Sound and Vibration, 333(12), 2475-2488. doi:10.1016/j.jsv.2014.02.005

Mace, B. R. (1984). Wave reflection and transmission in beams. Journal of Sound and Vibration, 97(2), 237-246. doi:10.1016/0022-460x(84)90320-1

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem