- -

Interpretation of the Acoustic Black Hole effect based on the concept of critical coupling

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Interpretation of the Acoustic Black Hole effect based on the concept of critical coupling

Show simple item record

Files in this item

dc.contributor.author Leng, J. es_ES
dc.contributor.author Romero García, Vicente es_ES
dc.contributor.author Pelat, A. es_ES
dc.contributor.author Picó Vila, Rubén es_ES
dc.contributor.author Groby, J.P. es_ES
dc.contributor.author GAUTIER, FRANÇOIS es_ES
dc.date.accessioned 2021-03-17T04:32:01Z
dc.date.available 2021-03-17T04:32:01Z
dc.date.issued 2020-04-14 es_ES
dc.identifier.issn 0022-460X es_ES
dc.identifier.uri http://hdl.handle.net/10251/163982
dc.description.abstract [EN] An Acoustic Black Hole (ABH) in a one-dimensional (1D) beam is a passive vibration damping device based on a local reduction of the beam thickness attached to a thin layer of attenuating material. This work aims at revisiting the ABH effect by analysing the ABH trapped modes in the complex frequency plane. This analysis relies on an analytical model based on the one-dimensional thin beam theory and the transfer matrix method which assumes that the ABH termination is discretised by constant thickness piecewise elements. The model is validated with numerical simulations by the Finite Element Method. The reflection coefficients of several ABH terminations are studied. The results show that an ABH presents an infinite number of modes associated to an infinite number of poles and zeros of the reflection coefficient, the density and quality factor of which depend on the order of the ABH profile. By considering the ABH termination as an open lossy resonator, its damping efficiency results therefore from a balance between the energy leakage of each mode and its inherent losses, known as the critical coupling condition. In particular, the broadband absorption of the vibration energy is achieved for frequencies higher than that of the mode that is critically coupled. This type of analysis is used to interpret the ABH effect. It provides the losses needed to obtain the critical coupling condition, and is suitable for the optimisation of one-dimensional ABH terminations. (C) 2020 Elsevier Ltd. All rights reserved. es_ES
dc.description.sponsorship This work has been funded by the RFI Le Mans Acoustic (Region Pays de la Loire) within the framework of the Metaplaque project. This article is based on work from COST action DENORMS CA 15125, supported by COST (European Cooperation in Science and Technology). This work was partly supported by the Spanish Ministry of Economy and Innovation (MINECO), by the European Union FEDER through project FIS2015-65998-C2-2, by the project AICO/2016/060 by Conselleria de Educacion, Investigacion, Cultura y Deporte de la Generalitat Valenciana and by the project eTNAA ANR-17-CE08-0035-01 (projet ANR 2017-2010). es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Journal of Sound and Vibration es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Vibration damper es_ES
dc.subject Acoustic Black Hole effect es_ES
dc.subject Reflection coefficient es_ES
dc.subject Critical coupling es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Interpretation of the Acoustic Black Hole effect based on the concept of critical coupling es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.jsv.2020.115199 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/COST//CA15125/EU/Designs for Noise Reducing Materials and Structures (DENORMS)/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ANR//ANR-17-CE08-0035/FR/Augmented Acoustic Black Holes : conception of light, stiff and non-resonant pannels/eTNAA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//FIS2015-65998-C2-2-P/ES/ONDAS ACUSTICAS EN CRISTALES, MEDIOS ESTRUCTURADOS Y METAMATERIALES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//AICO%2F2016%2F060/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Matemática Pura y Aplicada - Institut Universitari de Matemàtica Pura i Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.description.bibliographicCitation Leng, J.; Romero García, V.; Pelat, A.; Picó Vila, R.; Groby, J.; Gautier, F. (2020). Interpretation of the Acoustic Black Hole effect based on the concept of critical coupling. Journal of Sound and Vibration. 471:1-10. https://doi.org/10.1016/j.jsv.2020.115199 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.jsv.2020.115199 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 10 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 471 es_ES
dc.relation.pasarela S\401288 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Region Pays de la Loire es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Agence Nationale de la Recherche, Francia es_ES
dc.contributor.funder European Cooperation in Science and Technology es_ES
dc.description.references Lee, J. Y., & Jeon, W. (2017). Vibration damping using a spiral acoustic black holea). The Journal of the Acoustical Society of America, 141(3), 1437-1445. doi:10.1121/1.4976687 es_ES
dc.description.references Zhou, T., Tang, L., Ji, H., Qiu, J., & Cheng, L. (2017). Dynamic and Static Properties of Double-Layered Compound Acoustic Black Hole Structures. International Journal of Applied Mechanics, 09(05), 1750074. doi:10.1142/s1758825117500740 es_ES
dc.description.references Zhou, T., & Cheng, L. (2018). A resonant beam damper tailored with Acoustic Black Hole features for broadband vibration reduction. Journal of Sound and Vibration, 430, 174-184. doi:10.1016/j.jsv.2018.05.047 es_ES
dc.description.references Climente, A., Torrent, D., & Sánchez-Dehesa, J. (2013). Omnidirectional broadband insulating device for flexural waves in thin plates. Journal of Applied Physics, 114(21), 214903. doi:10.1063/1.4839375 es_ES
dc.description.references Climente, A., Torrent, D., & Sánchez-Dehesa, J. (2014). Gradient index lenses for flexural waves based on thickness variations. Applied Physics Letters, 105(6), 064101. doi:10.1063/1.4893153 es_ES
dc.description.references Zhu, H., & Semperlotti, F. (2017). Two-dimensional structure-embedded acoustic lenses based on periodic acoustic black holes. Journal of Applied Physics, 122(6), 065104. doi:10.1063/1.4998524 es_ES
dc.description.references Tang, L., & Cheng, L. (2017). Enhanced Acoustic Black Hole effect in beams with a modified thickness profile and extended platform. Journal of Sound and Vibration, 391, 116-126. doi:10.1016/j.jsv.2016.11.010 es_ES
dc.description.references Deng, J., Zheng, L., Zeng, P., Zuo, Y., & Guasch, O. (2019). Passive constrained viscoelastic layers to improve the efficiency of truncated acoustic black holes in beams. Mechanical Systems and Signal Processing, 118, 461-476. doi:10.1016/j.ymssp.2018.08.053 es_ES
dc.description.references Denis, V., Pelat, A., Touzé, C., & Gautier, F. (2017). Improvement of the acoustic black hole effect by using energy transfer due to geometric nonlinearity. International Journal of Non-Linear Mechanics, 94, 134-145. doi:10.1016/j.ijnonlinmec.2016.11.012 es_ES
dc.description.references Li, H., Touzé, C., Pelat, A., Gautier, F., & Kong, X. (2019). A vibro-impact acoustic black hole for passive damping of flexural beam vibrations. Journal of Sound and Vibration, 450, 28-46. doi:10.1016/j.jsv.2019.03.004 es_ES
dc.description.references Romero-García, V., Theocharis, G., Richoux, O., & Pagneux, V. (2016). Use of complex frequency plane to design broadband and sub-wavelength absorbers. The Journal of the Acoustical Society of America, 139(6), 3395-3403. doi:10.1121/1.4950708 es_ES
dc.description.references J. Leng, F. Gautier, A. Pelat, R. Pic, J.-P. Groby, V. Romero-Garca, Limits of flexural wave absorption by open lossy resonators: reflection and transmission problems, New J. Phys. 21 (053003). es_ES
dc.description.references Yariv, A. (2000). Universal relations for coupling of optical power between microresonators and dielectric waveguides. Electronics Letters, 36(4), 321. doi:10.1049/el:20000340 es_ES
dc.description.references Piper, J. R., & Fan, S. (2014). Total Absorption in a Graphene Monolayer in the Optical Regime by Critical Coupling with a Photonic Crystal Guided Resonance. ACS Photonics, 1(4), 347-353. doi:10.1021/ph400090p es_ES
dc.description.references Jiménez, N., Romero-García, V., Pagneux, V., & Groby, J.-P. (2017). Rainbow-trapping absorbers: Broadband, perfect and asymmetric sound absorption by subwavelength panels for transmission problems. Scientific Reports, 7(1). doi:10.1038/s41598-017-13706-4 es_ES
dc.description.references Groby, J.-P., Pommier, R., & Aurégan, Y. (2016). Use of slow sound to design perfect and broadband passive sound absorbing materials. The Journal of the Acoustical Society of America, 139(4), 1660-1671. doi:10.1121/1.4945101 es_ES
dc.description.references Krylov, V. V., & Tilman, F. J. B. S. (2004). Acoustic ‘black holes’ for flexural waves as effective vibration dampers. Journal of Sound and Vibration, 274(3-5), 605-619. doi:10.1016/j.jsv.2003.05.010 es_ES
dc.description.references Krylov, V. V., & Winward, R. E. T. B. (2007). Experimental investigation of the acoustic black hole effect for flexural waves in tapered plates. Journal of Sound and Vibration, 300(1-2), 43-49. doi:10.1016/j.jsv.2006.07.035 es_ES
dc.description.references Denis, V., Gautier, F., Pelat, A., & Poittevin, J. (2015). Measurement and modelling of the reflection coefficient of an Acoustic Black Hole termination. Journal of Sound and Vibration, 349, 67-79. doi:10.1016/j.jsv.2015.03.043 es_ES
dc.description.references Georgiev, V. B., Cuenca, J., Gautier, F., Simon, L., & Krylov, V. V. (2011). Damping of structural vibrations in beams and elliptical plates using the acoustic black hole effect. Journal of Sound and Vibration, 330(11), 2497-2508. doi:10.1016/j.jsv.2010.12.001 es_ES
dc.description.references Denis, V., Pelat, A., & Gautier, F. (2016). Scattering effects induced by imperfections on an acoustic black hole placed at a structural waveguide termination. Journal of Sound and Vibration, 362, 56-71. doi:10.1016/j.jsv.2015.10.016 es_ES
dc.description.references Denis, V., Pelat, A., Gautier, F., & Elie, B. (2014). Modal Overlap Factor of a beam with an acoustic black hole termination. Journal of Sound and Vibration, 333(12), 2475-2488. doi:10.1016/j.jsv.2014.02.005 es_ES
dc.description.references Mace, B. R. (1984). Wave reflection and transmission in beams. Journal of Sound and Vibration, 97(2), 237-246. doi:10.1016/0022-460x(84)90320-1 es_ES
dc.subject.ods 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación es_ES
dc.subject.ods 06.- Garantizar la disponibilidad y la gestión sostenible del agua y el saneamiento para todos es_ES


This item appears in the following Collection(s)

Show simple item record