Mostrar el registro sencillo del ítem
dc.contributor.author | Leng, J. | es_ES |
dc.contributor.author | Romero García, Vicente | es_ES |
dc.contributor.author | Pelat, A. | es_ES |
dc.contributor.author | Picó Vila, Rubén | es_ES |
dc.contributor.author | Groby, J.P. | es_ES |
dc.contributor.author | GAUTIER, FRANÇOIS | es_ES |
dc.date.accessioned | 2021-03-17T04:32:01Z | |
dc.date.available | 2021-03-17T04:32:01Z | |
dc.date.issued | 2020-04-14 | es_ES |
dc.identifier.issn | 0022-460X | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/163982 | |
dc.description.abstract | [EN] An Acoustic Black Hole (ABH) in a one-dimensional (1D) beam is a passive vibration damping device based on a local reduction of the beam thickness attached to a thin layer of attenuating material. This work aims at revisiting the ABH effect by analysing the ABH trapped modes in the complex frequency plane. This analysis relies on an analytical model based on the one-dimensional thin beam theory and the transfer matrix method which assumes that the ABH termination is discretised by constant thickness piecewise elements. The model is validated with numerical simulations by the Finite Element Method. The reflection coefficients of several ABH terminations are studied. The results show that an ABH presents an infinite number of modes associated to an infinite number of poles and zeros of the reflection coefficient, the density and quality factor of which depend on the order of the ABH profile. By considering the ABH termination as an open lossy resonator, its damping efficiency results therefore from a balance between the energy leakage of each mode and its inherent losses, known as the critical coupling condition. In particular, the broadband absorption of the vibration energy is achieved for frequencies higher than that of the mode that is critically coupled. This type of analysis is used to interpret the ABH effect. It provides the losses needed to obtain the critical coupling condition, and is suitable for the optimisation of one-dimensional ABH terminations. (C) 2020 Elsevier Ltd. All rights reserved. | es_ES |
dc.description.sponsorship | This work has been funded by the RFI Le Mans Acoustic (Region Pays de la Loire) within the framework of the Metaplaque project. This article is based on work from COST action DENORMS CA 15125, supported by COST (European Cooperation in Science and Technology). This work was partly supported by the Spanish Ministry of Economy and Innovation (MINECO), by the European Union FEDER through project FIS2015-65998-C2-2, by the project AICO/2016/060 by Conselleria de Educacion, Investigacion, Cultura y Deporte de la Generalitat Valenciana and by the project eTNAA ANR-17-CE08-0035-01 (projet ANR 2017-2010). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Journal of Sound and Vibration | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Vibration damper | es_ES |
dc.subject | Acoustic Black Hole effect | es_ES |
dc.subject | Reflection coefficient | es_ES |
dc.subject | Critical coupling | es_ES |
dc.subject.classification | FISICA APLICADA | es_ES |
dc.title | Interpretation of the Acoustic Black Hole effect based on the concept of critical coupling | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.jsv.2020.115199 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/COST//CA15125/EU/Designs for Noise Reducing Materials and Structures (DENORMS)/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/ANR//ANR-17-CE08-0035/FR/Augmented Acoustic Black Holes : conception of light, stiff and non-resonant pannels/eTNAA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//FIS2015-65998-C2-2-P/ES/ONDAS ACUSTICAS EN CRISTALES, MEDIOS ESTRUCTURADOS Y METAMATERIALES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//AICO%2F2016%2F060/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Matemática Pura y Aplicada - Institut Universitari de Matemàtica Pura i Aplicada | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada | es_ES |
dc.description.bibliographicCitation | Leng, J.; Romero García, V.; Pelat, A.; Picó Vila, R.; Groby, J.; Gautier, F. (2020). Interpretation of the Acoustic Black Hole effect based on the concept of critical coupling. Journal of Sound and Vibration. 471:1-10. https://doi.org/10.1016/j.jsv.2020.115199 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.jsv.2020.115199 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 10 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 471 | es_ES |
dc.relation.pasarela | S\401288 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Region Pays de la Loire | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Agence Nationale de la Recherche, Francia | es_ES |
dc.contributor.funder | European Cooperation in Science and Technology | es_ES |
dc.description.references | Lee, J. Y., & Jeon, W. (2017). Vibration damping using a spiral acoustic black holea). The Journal of the Acoustical Society of America, 141(3), 1437-1445. doi:10.1121/1.4976687 | es_ES |
dc.description.references | Zhou, T., Tang, L., Ji, H., Qiu, J., & Cheng, L. (2017). Dynamic and Static Properties of Double-Layered Compound Acoustic Black Hole Structures. International Journal of Applied Mechanics, 09(05), 1750074. doi:10.1142/s1758825117500740 | es_ES |
dc.description.references | Zhou, T., & Cheng, L. (2018). A resonant beam damper tailored with Acoustic Black Hole features for broadband vibration reduction. Journal of Sound and Vibration, 430, 174-184. doi:10.1016/j.jsv.2018.05.047 | es_ES |
dc.description.references | Climente, A., Torrent, D., & Sánchez-Dehesa, J. (2013). Omnidirectional broadband insulating device for flexural waves in thin plates. Journal of Applied Physics, 114(21), 214903. doi:10.1063/1.4839375 | es_ES |
dc.description.references | Climente, A., Torrent, D., & Sánchez-Dehesa, J. (2014). Gradient index lenses for flexural waves based on thickness variations. Applied Physics Letters, 105(6), 064101. doi:10.1063/1.4893153 | es_ES |
dc.description.references | Zhu, H., & Semperlotti, F. (2017). Two-dimensional structure-embedded acoustic lenses based on periodic acoustic black holes. Journal of Applied Physics, 122(6), 065104. doi:10.1063/1.4998524 | es_ES |
dc.description.references | Tang, L., & Cheng, L. (2017). Enhanced Acoustic Black Hole effect in beams with a modified thickness profile and extended platform. Journal of Sound and Vibration, 391, 116-126. doi:10.1016/j.jsv.2016.11.010 | es_ES |
dc.description.references | Deng, J., Zheng, L., Zeng, P., Zuo, Y., & Guasch, O. (2019). Passive constrained viscoelastic layers to improve the efficiency of truncated acoustic black holes in beams. Mechanical Systems and Signal Processing, 118, 461-476. doi:10.1016/j.ymssp.2018.08.053 | es_ES |
dc.description.references | Denis, V., Pelat, A., Touzé, C., & Gautier, F. (2017). Improvement of the acoustic black hole effect by using energy transfer due to geometric nonlinearity. International Journal of Non-Linear Mechanics, 94, 134-145. doi:10.1016/j.ijnonlinmec.2016.11.012 | es_ES |
dc.description.references | Li, H., Touzé, C., Pelat, A., Gautier, F., & Kong, X. (2019). A vibro-impact acoustic black hole for passive damping of flexural beam vibrations. Journal of Sound and Vibration, 450, 28-46. doi:10.1016/j.jsv.2019.03.004 | es_ES |
dc.description.references | Romero-García, V., Theocharis, G., Richoux, O., & Pagneux, V. (2016). Use of complex frequency plane to design broadband and sub-wavelength absorbers. The Journal of the Acoustical Society of America, 139(6), 3395-3403. doi:10.1121/1.4950708 | es_ES |
dc.description.references | J. Leng, F. Gautier, A. Pelat, R. Pic, J.-P. Groby, V. Romero-Garca, Limits of flexural wave absorption by open lossy resonators: reflection and transmission problems, New J. Phys. 21 (053003). | es_ES |
dc.description.references | Yariv, A. (2000). Universal relations for coupling of optical power between microresonators and dielectric waveguides. Electronics Letters, 36(4), 321. doi:10.1049/el:20000340 | es_ES |
dc.description.references | Piper, J. R., & Fan, S. (2014). Total Absorption in a Graphene Monolayer in the Optical Regime by Critical Coupling with a Photonic Crystal Guided Resonance. ACS Photonics, 1(4), 347-353. doi:10.1021/ph400090p | es_ES |
dc.description.references | Jiménez, N., Romero-García, V., Pagneux, V., & Groby, J.-P. (2017). Rainbow-trapping absorbers: Broadband, perfect and asymmetric sound absorption by subwavelength panels for transmission problems. Scientific Reports, 7(1). doi:10.1038/s41598-017-13706-4 | es_ES |
dc.description.references | Groby, J.-P., Pommier, R., & Aurégan, Y. (2016). Use of slow sound to design perfect and broadband passive sound absorbing materials. The Journal of the Acoustical Society of America, 139(4), 1660-1671. doi:10.1121/1.4945101 | es_ES |
dc.description.references | Krylov, V. V., & Tilman, F. J. B. S. (2004). Acoustic ‘black holes’ for flexural waves as effective vibration dampers. Journal of Sound and Vibration, 274(3-5), 605-619. doi:10.1016/j.jsv.2003.05.010 | es_ES |
dc.description.references | Krylov, V. V., & Winward, R. E. T. B. (2007). Experimental investigation of the acoustic black hole effect for flexural waves in tapered plates. Journal of Sound and Vibration, 300(1-2), 43-49. doi:10.1016/j.jsv.2006.07.035 | es_ES |
dc.description.references | Denis, V., Gautier, F., Pelat, A., & Poittevin, J. (2015). Measurement and modelling of the reflection coefficient of an Acoustic Black Hole termination. Journal of Sound and Vibration, 349, 67-79. doi:10.1016/j.jsv.2015.03.043 | es_ES |
dc.description.references | Georgiev, V. B., Cuenca, J., Gautier, F., Simon, L., & Krylov, V. V. (2011). Damping of structural vibrations in beams and elliptical plates using the acoustic black hole effect. Journal of Sound and Vibration, 330(11), 2497-2508. doi:10.1016/j.jsv.2010.12.001 | es_ES |
dc.description.references | Denis, V., Pelat, A., & Gautier, F. (2016). Scattering effects induced by imperfections on an acoustic black hole placed at a structural waveguide termination. Journal of Sound and Vibration, 362, 56-71. doi:10.1016/j.jsv.2015.10.016 | es_ES |
dc.description.references | Denis, V., Pelat, A., Gautier, F., & Elie, B. (2014). Modal Overlap Factor of a beam with an acoustic black hole termination. Journal of Sound and Vibration, 333(12), 2475-2488. doi:10.1016/j.jsv.2014.02.005 | es_ES |
dc.description.references | Mace, B. R. (1984). Wave reflection and transmission in beams. Journal of Sound and Vibration, 97(2), 237-246. doi:10.1016/0022-460x(84)90320-1 | es_ES |
dc.subject.ods | 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación | es_ES |
dc.subject.ods | 06.- Garantizar la disponibilidad y la gestión sostenible del agua y el saneamiento para todos | es_ES |