Mostrar el registro sencillo del ítem
dc.contributor.author | Bravo, Jose Maria | es_ES |
dc.contributor.author | Buchón Moragues, Fernando Francisco | es_ES |
dc.contributor.author | Redondo, Javier | es_ES |
dc.contributor.author | Ferri García, Marcelino | es_ES |
dc.contributor.author | Sánchez Pérez, Juan Vicente | es_ES |
dc.date.accessioned | 2021-03-17T04:32:03Z | |
dc.date.available | 2021-03-17T04:32:03Z | |
dc.date.issued | 2019-11-08 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/163983 | |
dc.description.abstract | [EN] In this work, we present an integrated photogrammetric-acoustic technique that, together with the construction of a scaled wind tunnel, allows us to experimentally analyze the permeability behavior of a new type of acoustic screen based on a material called sonic crystal. Acoustic screens are devices used to reduce noise, mostly due to communication infrastructures, in its transmission phase from the source to the receiver. The main constructive difference between these new screens and the classic ones is that the first ones are formed by arrays of acoustic scatterers while the second ones are formed by continuous walls. This implies that, due to their geometry, screens based on sonic crystals are permeable to wind and water, unlike the classic ones. This fact may allow the use of these new screens in sandy soils, where sand would pass through the screen, avoiding the formation of sand dunes that are formed in classic screens and drastically reducing their acoustic performance. In this work, the movement of the sand and the resulting acoustic attenuation in these new screens are analyzed qualitatively, comparing the results with those obtained with the classic ones, and obtaining interesting results from the acoustic point of view. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Sensors | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Photogrammetry | es_ES |
dc.subject | Noise control | es_ES |
dc.subject | Acoustic barriers | es_ES |
dc.subject | Sonic crystal | es_ES |
dc.subject.classification | INGENIERIA CARTOGRAFICA, GEODESIA Y FOTOGRAMETRIA | es_ES |
dc.subject.classification | FISICA APLICADA | es_ES |
dc.title | Integrated Photogrammetric-Acoustic Technique for Qualitative Analysis of the Performance of Acoustic Screens in Sandy Soils | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/s19224881 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Cartográfica Geodesia y Fotogrametría - Departament d'Enginyeria Cartogràfica, Geodèsia i Fotogrametria | es_ES |
dc.description.bibliographicCitation | Bravo, JM.; Buchón Moragues, FF.; Redondo, J.; Ferri García, M.; Sánchez Pérez, JV. (2019). Integrated Photogrammetric-Acoustic Technique for Qualitative Analysis of the Performance of Acoustic Screens in Sandy Soils. Sensors. 19(22):1-17. https://doi.org/10.3390/s19224881 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/s19224881 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 17 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 19 | es_ES |
dc.description.issue | 22 | es_ES |
dc.identifier.eissn | 1424-8220 | es_ES |
dc.identifier.pmid | 31717425 | es_ES |
dc.identifier.pmcid | PMC6891553 | es_ES |
dc.relation.pasarela | S\397516 | es_ES |
dc.description.references | Castiñeira-Ibañez, S., Rubio, C., & Sánchez-Pérez, J. V. (2015). Environmental noise control during its transmission phase to protect buildings. Design model for acoustic barriers based on arrays of isolated scatterers. Building and Environment, 93, 179-185. doi:10.1016/j.buildenv.2015.07.002 | es_ES |
dc.description.references | Fredianelli, L., Del Pizzo, A., & Licitra, G. (2019). Recent Developments in Sonic Crystals as Barriers for Road Traffic Noise Mitigation. Environments, 6(2), 14. doi:10.3390/environments6020014 | es_ES |
dc.description.references | Martínez-Sala, R., Sancho, J., Sánchez, J. V., Gómez, V., Llinares, J., & Meseguer, F. (1995). Sound attenuation by sculpture. Nature, 378(6554), 241-241. doi:10.1038/378241a0 | es_ES |
dc.description.references | Morandi, F., Miniaci, M., Marzani, A., Barbaresi, L., & Garai, M. (2016). Standardised acoustic characterisation of sonic crystals noise barriers: Sound insulation and reflection properties. Applied Acoustics, 114, 294-306. doi:10.1016/j.apacoust.2016.07.028 | es_ES |
dc.description.references | Castiñeira-Ibáñez, S., Rubio, C., Romero-García, V., Sánchez-Pérez, J. V., & García-Raffi, L. M. (2012). Design, Manufacture and Characterization of an Acoustic Barrier Made of Multi-Phenomena Cylindrical Scatterers Arranged in a Fractal-Based Geometry. Archives of Acoustics, 37(4), 455-462. doi:10.2478/v10168-012-0057-9 | es_ES |
dc.description.references | Sanchez-Perez, J. V., Castineira-Ibanez, S., Romero-Garcia, V., & Garcia-Raffi, L. M. (2015). PERIODIC SYSTEMS AS ROAD TRAFFIC NOISE REDUCING DEVICES: PROTOTYPE AND STANDARDIZATION. Environmental Engineering and Management Journal, 14(12), 2759-2769. doi:10.30638/eemj.2015.293 | es_ES |
dc.description.references | Wang, Y.-F., Wang, Y.-S., & Laude, V. (2015). Wave propagation in two-dimensional viscoelastic metamaterials. Physical Review B, 92(10). doi:10.1103/physrevb.92.104110 | es_ES |
dc.description.references | Wang, Y.-F., Liang, J.-W., Chen, A.-L., Wang, Y.-S., & Laude, V. (2019). Wave propagation in one-dimensional fluid-saturated porous metamaterials. Physical Review B, 99(13). doi:10.1103/physrevb.99.134304 | es_ES |
dc.description.references | Valkenburg, R. J., & McIvor, A. M. (1998). Accurate 3D measurement using a structured light system. Image and Vision Computing, 16(2), 99-110. doi:10.1016/s0262-8856(97)00053-x | es_ES |
dc.description.references | Hui, Z., Liyan, Z., Hongtao, W., & Jianfu, C. (2009). Surface Measurement Based on Instantaneous Random Illumination. Chinese Journal of Aeronautics, 22(3), 316-324. doi:10.1016/s1000-9361(08)60105-3 | es_ES |
dc.description.references | McPherron, S. P., Gernat, T., & Hublin, J.-J. (2009). Structured light scanning for high-resolution documentation of in situ archaeological finds. Journal of Archaeological Science, 36(1), 19-24. doi:10.1016/j.jas.2008.06.028 | es_ES |
dc.description.references | Bruno, F., Bianco, G., Muzzupappa, M., Barone, S., & Razionale, A. V. (2011). Experimentation of structured light and stereo vision for underwater 3D reconstruction. ISPRS Journal of Photogrammetry and Remote Sensing, 66(4), 508-518. doi:10.1016/j.isprsjprs.2011.02.009 | es_ES |
dc.description.references | Bertani, D. (1995). High-resolution optical topography applied to ancient painting diagnostics. Optical Engineering, 34(4), 1219. doi:10.1117/12.196545 | es_ES |
dc.description.references | Buchón-Moragues, F., Bravo, J., Ferri, M., Redondo, J., & Sánchez-Pérez, J. (2016). Application of Structured Light System Technique for Authentication of Wooden Panel Paintings. Sensors, 16(6), 881. doi:10.3390/s16060881 | es_ES |
dc.description.references | Arias, P., Herráez, J., Lorenzo, H., & Ordóñez, C. (2005). Control of structural problems in cultural heritage monuments using close-range photogrammetry and computer methods. Computers & Structures, 83(21-22), 1754-1766. doi:10.1016/j.compstruc.2005.02.018 | es_ES |
dc.description.references | Rocchini, C., Cignoni, P., Montani, C., Pingi, P., & Scopigno, R. (2001). A low cost 3D scanner based on structured light. Computer Graphics Forum, 20(3), 299-308. doi:10.1111/1467-8659.00522 | es_ES |
dc.description.references | Bianchi, M. G., Casula, G., Cuccuru, F., Fais, S., Ligas, P., & Ferrara, C. (2018). Three-dimensional imaging from laser scanner, photogrammetric and acoustic non-destructive techniques in the characterization of stone building materials. Advances in Geosciences, 45, 57-62. doi:10.5194/adgeo-45-57-2018 | es_ES |
dc.description.references | Alvarez, L., Moreno, H., Segales, A., Pham, T., Pillar-Little, E., & Chilson, P. (2018). Merging Unmanned Aerial Systems (UAS) Imagery and Echo Soundings with an Adaptive Sampling Technique for Bathymetric Surveys. Remote Sensing, 10(9), 1362. doi:10.3390/rs10091362 | es_ES |
dc.description.references | Miller, B. S., Wotherspoon, S., Rankin, S., Calderan, S., Leaper, R., & Keating, J. L. (2018). Estimating drift of directional sonobuoys from acoustic bearings. The Journal of the Acoustical Society of America, 143(1), EL25-EL30. doi:10.1121/1.5020621 | es_ES |
dc.description.references | Zhang, D., Li, S., Bai, X., Yang, Y., & Chu, Y. (2019). Experimental Study on Mechanical Properties, Energy Dissipation Characteristics and Acoustic Emission Parameters of Compression Failure of Sandstone Specimens Containing En Echelon Flaws. Applied Sciences, 9(3), 596. doi:10.3390/app9030596 | es_ES |
dc.description.references | Hartley, R. I., & Schaffalitzky, F. (2009). Reconstruction from Projections Using Grassmann Tensors. International Journal of Computer Vision, 83(3), 274-293. doi:10.1007/s11263-009-0225-1 | es_ES |
dc.description.references | Ahmadabadian, A. H., Robson, S., Boehm, J., Shortis, M., Wenzel, K., & Fritsch, D. (2013). A comparison of dense matching algorithms for scaled surface reconstruction using stereo camera rigs. ISPRS Journal of Photogrammetry and Remote Sensing, 78, 157-167. doi:10.1016/j.isprsjprs.2013.01.015 | es_ES |
dc.description.references | Olague, G., & Dunn, E. (2007). Development of a practical photogrammetric network design using evolutionary computing. The Photogrammetric Record, 22(117), 22-38. doi:10.1111/j.1477-9730.2007.00403.x | es_ES |
dc.description.references | Hirschmuller, H. (2008). Stereo Processing by Semiglobal Matching and Mutual Information. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(2), 328-341. doi:10.1109/tpami.2007.1166 | es_ES |
dc.description.references | Chen, Y., & Wang, L. (2014). Periodic co-continuous acoustic metamaterials with overlapping locally resonant and Bragg band gaps. Applied Physics Letters, 105(19), 191907. doi:10.1063/1.4902129 | es_ES |
dc.description.references | Kaina, N., Causier, A., Bourlier, Y., Fink, M., Berthelot, T., & Lerosey, G. (2017). Slow waves in locally resonant metamaterials line defect waveguides. Scientific Reports, 7(1). doi:10.1038/s41598-017-15403-8 | es_ES |
dc.description.references | Cummer, S. A., Christensen, J., & Alù, A. (2016). Controlling sound with acoustic metamaterials. Nature Reviews Materials, 1(3). doi:10.1038/natrevmats.2016.1 | es_ES |
dc.description.references | Sigalas, M. M., & Economou, E. N. (1992). Elastic and acoustic wave band structure. Journal of Sound and Vibration, 158(2), 377-382. doi:10.1016/0022-460x(92)90059-7 | es_ES |
dc.description.references | Sánchez-Pérez, J. V., Caballero, D., Mártinez-Sala, R., Rubio, C., Sánchez-Dehesa, J., Meseguer, F., … Gálvez, F. (1998). Sound Attenuation by a Two-Dimensional Array of Rigid Cylinders. Physical Review Letters, 80(24), 5325-5328. doi:10.1103/physrevlett.80.5325 | es_ES |
dc.description.references | Sanchez-Perez, J. V., Rubio, C., Martinez-Sala, R., Sanchez-Grandia, R., & Gomez, V. (2002). Acoustic barriers based on periodic arrays of scatterers. Applied Physics Letters, 81(27), 5240-5242. doi:10.1063/1.1533112 | es_ES |