- -

Integrated Photogrammetric-Acoustic Technique for Qualitative Analysis of the Performance of Acoustic Screens in Sandy Soils

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Integrated Photogrammetric-Acoustic Technique for Qualitative Analysis of the Performance of Acoustic Screens in Sandy Soils

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Bravo, Jose Maria es_ES
dc.contributor.author Buchón Moragues, Fernando Francisco es_ES
dc.contributor.author Redondo, Javier es_ES
dc.contributor.author Ferri García, Marcelino es_ES
dc.contributor.author Sánchez Pérez, Juan Vicente es_ES
dc.date.accessioned 2021-03-17T04:32:03Z
dc.date.available 2021-03-17T04:32:03Z
dc.date.issued 2019-11-08 es_ES
dc.identifier.uri http://hdl.handle.net/10251/163983
dc.description.abstract [EN] In this work, we present an integrated photogrammetric-acoustic technique that, together with the construction of a scaled wind tunnel, allows us to experimentally analyze the permeability behavior of a new type of acoustic screen based on a material called sonic crystal. Acoustic screens are devices used to reduce noise, mostly due to communication infrastructures, in its transmission phase from the source to the receiver. The main constructive difference between these new screens and the classic ones is that the first ones are formed by arrays of acoustic scatterers while the second ones are formed by continuous walls. This implies that, due to their geometry, screens based on sonic crystals are permeable to wind and water, unlike the classic ones. This fact may allow the use of these new screens in sandy soils, where sand would pass through the screen, avoiding the formation of sand dunes that are formed in classic screens and drastically reducing their acoustic performance. In this work, the movement of the sand and the resulting acoustic attenuation in these new screens are analyzed qualitatively, comparing the results with those obtained with the classic ones, and obtaining interesting results from the acoustic point of view. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Sensors es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Photogrammetry es_ES
dc.subject Noise control es_ES
dc.subject Acoustic barriers es_ES
dc.subject Sonic crystal es_ES
dc.subject.classification INGENIERIA CARTOGRAFICA, GEODESIA Y FOTOGRAMETRIA es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Integrated Photogrammetric-Acoustic Technique for Qualitative Analysis of the Performance of Acoustic Screens in Sandy Soils es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/s19224881 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Cartográfica Geodesia y Fotogrametría - Departament d'Enginyeria Cartogràfica, Geodèsia i Fotogrametria es_ES
dc.description.bibliographicCitation Bravo, JM.; Buchón Moragues, FF.; Redondo, J.; Ferri García, M.; Sánchez Pérez, JV. (2019). Integrated Photogrammetric-Acoustic Technique for Qualitative Analysis of the Performance of Acoustic Screens in Sandy Soils. Sensors. 19(22):1-17. https://doi.org/10.3390/s19224881 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/s19224881 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 17 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 19 es_ES
dc.description.issue 22 es_ES
dc.identifier.eissn 1424-8220 es_ES
dc.identifier.pmid 31717425 es_ES
dc.identifier.pmcid PMC6891553 es_ES
dc.relation.pasarela S\397516 es_ES
dc.description.references Castiñeira-Ibañez, S., Rubio, C., & Sánchez-Pérez, J. V. (2015). Environmental noise control during its transmission phase to protect buildings. Design model for acoustic barriers based on arrays of isolated scatterers. Building and Environment, 93, 179-185. doi:10.1016/j.buildenv.2015.07.002 es_ES
dc.description.references Fredianelli, L., Del Pizzo, A., & Licitra, G. (2019). Recent Developments in Sonic Crystals as Barriers for Road Traffic Noise Mitigation. Environments, 6(2), 14. doi:10.3390/environments6020014 es_ES
dc.description.references Martínez-Sala, R., Sancho, J., Sánchez, J. V., Gómez, V., Llinares, J., & Meseguer, F. (1995). Sound attenuation by sculpture. Nature, 378(6554), 241-241. doi:10.1038/378241a0 es_ES
dc.description.references Morandi, F., Miniaci, M., Marzani, A., Barbaresi, L., & Garai, M. (2016). Standardised acoustic characterisation of sonic crystals noise barriers: Sound insulation and reflection properties. Applied Acoustics, 114, 294-306. doi:10.1016/j.apacoust.2016.07.028 es_ES
dc.description.references Castiñeira-Ibáñez, S., Rubio, C., Romero-García, V., Sánchez-Pérez, J. V., & García-Raffi, L. M. (2012). Design, Manufacture and Characterization of an Acoustic Barrier Made of Multi-Phenomena Cylindrical Scatterers Arranged in a Fractal-Based Geometry. Archives of Acoustics, 37(4), 455-462. doi:10.2478/v10168-012-0057-9 es_ES
dc.description.references Sanchez-Perez, J. V., Castineira-Ibanez, S., Romero-Garcia, V., & Garcia-Raffi, L. M. (2015). PERIODIC SYSTEMS AS ROAD TRAFFIC NOISE REDUCING DEVICES: PROTOTYPE AND STANDARDIZATION. Environmental Engineering and Management Journal, 14(12), 2759-2769. doi:10.30638/eemj.2015.293 es_ES
dc.description.references Wang, Y.-F., Wang, Y.-S., & Laude, V. (2015). Wave propagation in two-dimensional viscoelastic metamaterials. Physical Review B, 92(10). doi:10.1103/physrevb.92.104110 es_ES
dc.description.references Wang, Y.-F., Liang, J.-W., Chen, A.-L., Wang, Y.-S., & Laude, V. (2019). Wave propagation in one-dimensional fluid-saturated porous metamaterials. Physical Review B, 99(13). doi:10.1103/physrevb.99.134304 es_ES
dc.description.references Valkenburg, R. J., & McIvor, A. M. (1998). Accurate 3D measurement using a structured light system. Image and Vision Computing, 16(2), 99-110. doi:10.1016/s0262-8856(97)00053-x es_ES
dc.description.references Hui, Z., Liyan, Z., Hongtao, W., & Jianfu, C. (2009). Surface Measurement Based on Instantaneous Random Illumination. Chinese Journal of Aeronautics, 22(3), 316-324. doi:10.1016/s1000-9361(08)60105-3 es_ES
dc.description.references McPherron, S. P., Gernat, T., & Hublin, J.-J. (2009). Structured light scanning for high-resolution documentation of in situ archaeological finds. Journal of Archaeological Science, 36(1), 19-24. doi:10.1016/j.jas.2008.06.028 es_ES
dc.description.references Bruno, F., Bianco, G., Muzzupappa, M., Barone, S., & Razionale, A. V. (2011). Experimentation of structured light and stereo vision for underwater 3D reconstruction. ISPRS Journal of Photogrammetry and Remote Sensing, 66(4), 508-518. doi:10.1016/j.isprsjprs.2011.02.009 es_ES
dc.description.references Bertani, D. (1995). High-resolution optical topography applied to ancient painting diagnostics. Optical Engineering, 34(4), 1219. doi:10.1117/12.196545 es_ES
dc.description.references Buchón-Moragues, F., Bravo, J., Ferri, M., Redondo, J., & Sánchez-Pérez, J. (2016). Application of Structured Light System Technique for Authentication of Wooden Panel Paintings. Sensors, 16(6), 881. doi:10.3390/s16060881 es_ES
dc.description.references Arias, P., Herráez, J., Lorenzo, H., & Ordóñez, C. (2005). Control of structural problems in cultural heritage monuments using close-range photogrammetry and computer methods. Computers & Structures, 83(21-22), 1754-1766. doi:10.1016/j.compstruc.2005.02.018 es_ES
dc.description.references Rocchini, C., Cignoni, P., Montani, C., Pingi, P., & Scopigno, R. (2001). A low cost 3D scanner based on structured light. Computer Graphics Forum, 20(3), 299-308. doi:10.1111/1467-8659.00522 es_ES
dc.description.references Bianchi, M. G., Casula, G., Cuccuru, F., Fais, S., Ligas, P., & Ferrara, C. (2018). Three-dimensional imaging from laser scanner, photogrammetric and acoustic non-destructive techniques in the characterization of stone building materials. Advances in Geosciences, 45, 57-62. doi:10.5194/adgeo-45-57-2018 es_ES
dc.description.references Alvarez, L., Moreno, H., Segales, A., Pham, T., Pillar-Little, E., & Chilson, P. (2018). Merging Unmanned Aerial Systems (UAS) Imagery and Echo Soundings with an Adaptive Sampling Technique for Bathymetric Surveys. Remote Sensing, 10(9), 1362. doi:10.3390/rs10091362 es_ES
dc.description.references Miller, B. S., Wotherspoon, S., Rankin, S., Calderan, S., Leaper, R., & Keating, J. L. (2018). Estimating drift of directional sonobuoys from acoustic bearings. The Journal of the Acoustical Society of America, 143(1), EL25-EL30. doi:10.1121/1.5020621 es_ES
dc.description.references Zhang, D., Li, S., Bai, X., Yang, Y., & Chu, Y. (2019). Experimental Study on Mechanical Properties, Energy Dissipation Characteristics and Acoustic Emission Parameters of Compression Failure of Sandstone Specimens Containing En Echelon Flaws. Applied Sciences, 9(3), 596. doi:10.3390/app9030596 es_ES
dc.description.references Hartley, R. I., & Schaffalitzky, F. (2009). Reconstruction from Projections Using Grassmann Tensors. International Journal of Computer Vision, 83(3), 274-293. doi:10.1007/s11263-009-0225-1 es_ES
dc.description.references Ahmadabadian, A. H., Robson, S., Boehm, J., Shortis, M., Wenzel, K., & Fritsch, D. (2013). A comparison of dense matching algorithms for scaled surface reconstruction using stereo camera rigs. ISPRS Journal of Photogrammetry and Remote Sensing, 78, 157-167. doi:10.1016/j.isprsjprs.2013.01.015 es_ES
dc.description.references Olague, G., & Dunn, E. (2007). Development of a practical photogrammetric network design using evolutionary computing. The Photogrammetric Record, 22(117), 22-38. doi:10.1111/j.1477-9730.2007.00403.x es_ES
dc.description.references Hirschmuller, H. (2008). Stereo Processing by Semiglobal Matching and Mutual Information. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(2), 328-341. doi:10.1109/tpami.2007.1166 es_ES
dc.description.references Chen, Y., & Wang, L. (2014). Periodic co-continuous acoustic metamaterials with overlapping locally resonant and Bragg band gaps. Applied Physics Letters, 105(19), 191907. doi:10.1063/1.4902129 es_ES
dc.description.references Kaina, N., Causier, A., Bourlier, Y., Fink, M., Berthelot, T., & Lerosey, G. (2017). Slow waves in locally resonant metamaterials line defect waveguides. Scientific Reports, 7(1). doi:10.1038/s41598-017-15403-8 es_ES
dc.description.references Cummer, S. A., Christensen, J., & Alù, A. (2016). Controlling sound with acoustic metamaterials. Nature Reviews Materials, 1(3). doi:10.1038/natrevmats.2016.1 es_ES
dc.description.references Sigalas, M. M., & Economou, E. N. (1992). Elastic and acoustic wave band structure. Journal of Sound and Vibration, 158(2), 377-382. doi:10.1016/0022-460x(92)90059-7 es_ES
dc.description.references Sánchez-Pérez, J. V., Caballero, D., Mártinez-Sala, R., Rubio, C., Sánchez-Dehesa, J., Meseguer, F., … Gálvez, F. (1998). Sound Attenuation by a Two-Dimensional Array of Rigid Cylinders. Physical Review Letters, 80(24), 5325-5328. doi:10.1103/physrevlett.80.5325 es_ES
dc.description.references Sanchez-Perez, J. V., Rubio, C., Martinez-Sala, R., Sanchez-Grandia, R., & Gomez, V. (2002). Acoustic barriers based on periodic arrays of scatterers. Applied Physics Letters, 81(27), 5240-5242. doi:10.1063/1.1533112 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem