Castiñeira-Ibañez, S., Rubio, C., & Sánchez-Pérez, J. V. (2015). Environmental noise control during its transmission phase to protect buildings. Design model for acoustic barriers based on arrays of isolated scatterers. Building and Environment, 93, 179-185. doi:10.1016/j.buildenv.2015.07.002
Fredianelli, L., Del Pizzo, A., & Licitra, G. (2019). Recent Developments in Sonic Crystals as Barriers for Road Traffic Noise Mitigation. Environments, 6(2), 14. doi:10.3390/environments6020014
Martínez-Sala, R., Sancho, J., Sánchez, J. V., Gómez, V., Llinares, J., & Meseguer, F. (1995). Sound attenuation by sculpture. Nature, 378(6554), 241-241. doi:10.1038/378241a0
[+]
Castiñeira-Ibañez, S., Rubio, C., & Sánchez-Pérez, J. V. (2015). Environmental noise control during its transmission phase to protect buildings. Design model for acoustic barriers based on arrays of isolated scatterers. Building and Environment, 93, 179-185. doi:10.1016/j.buildenv.2015.07.002
Fredianelli, L., Del Pizzo, A., & Licitra, G. (2019). Recent Developments in Sonic Crystals as Barriers for Road Traffic Noise Mitigation. Environments, 6(2), 14. doi:10.3390/environments6020014
Martínez-Sala, R., Sancho, J., Sánchez, J. V., Gómez, V., Llinares, J., & Meseguer, F. (1995). Sound attenuation by sculpture. Nature, 378(6554), 241-241. doi:10.1038/378241a0
Morandi, F., Miniaci, M., Marzani, A., Barbaresi, L., & Garai, M. (2016). Standardised acoustic characterisation of sonic crystals noise barriers: Sound insulation and reflection properties. Applied Acoustics, 114, 294-306. doi:10.1016/j.apacoust.2016.07.028
Castiñeira-Ibáñez, S., Rubio, C., Romero-García, V., Sánchez-Pérez, J. V., & García-Raffi, L. M. (2012). Design, Manufacture and Characterization of an Acoustic Barrier Made of Multi-Phenomena Cylindrical Scatterers Arranged in a Fractal-Based Geometry. Archives of Acoustics, 37(4), 455-462. doi:10.2478/v10168-012-0057-9
Sanchez-Perez, J. V., Castineira-Ibanez, S., Romero-Garcia, V., & Garcia-Raffi, L. M. (2015). PERIODIC SYSTEMS AS ROAD TRAFFIC NOISE REDUCING DEVICES: PROTOTYPE AND STANDARDIZATION. Environmental Engineering and Management Journal, 14(12), 2759-2769. doi:10.30638/eemj.2015.293
Wang, Y.-F., Wang, Y.-S., & Laude, V. (2015). Wave propagation in two-dimensional viscoelastic metamaterials. Physical Review B, 92(10). doi:10.1103/physrevb.92.104110
Wang, Y.-F., Liang, J.-W., Chen, A.-L., Wang, Y.-S., & Laude, V. (2019). Wave propagation in one-dimensional fluid-saturated porous metamaterials. Physical Review B, 99(13). doi:10.1103/physrevb.99.134304
Valkenburg, R. J., & McIvor, A. M. (1998). Accurate 3D measurement using a structured light system. Image and Vision Computing, 16(2), 99-110. doi:10.1016/s0262-8856(97)00053-x
Hui, Z., Liyan, Z., Hongtao, W., & Jianfu, C. (2009). Surface Measurement Based on Instantaneous Random Illumination. Chinese Journal of Aeronautics, 22(3), 316-324. doi:10.1016/s1000-9361(08)60105-3
McPherron, S. P., Gernat, T., & Hublin, J.-J. (2009). Structured light scanning for high-resolution documentation of in situ archaeological finds. Journal of Archaeological Science, 36(1), 19-24. doi:10.1016/j.jas.2008.06.028
Bruno, F., Bianco, G., Muzzupappa, M., Barone, S., & Razionale, A. V. (2011). Experimentation of structured light and stereo vision for underwater 3D reconstruction. ISPRS Journal of Photogrammetry and Remote Sensing, 66(4), 508-518. doi:10.1016/j.isprsjprs.2011.02.009
Bertani, D. (1995). High-resolution optical topography applied to ancient painting diagnostics. Optical Engineering, 34(4), 1219. doi:10.1117/12.196545
Buchón-Moragues, F., Bravo, J., Ferri, M., Redondo, J., & Sánchez-Pérez, J. (2016). Application of Structured Light System Technique for Authentication of Wooden Panel Paintings. Sensors, 16(6), 881. doi:10.3390/s16060881
Arias, P., Herráez, J., Lorenzo, H., & Ordóñez, C. (2005). Control of structural problems in cultural heritage monuments using close-range photogrammetry and computer methods. Computers & Structures, 83(21-22), 1754-1766. doi:10.1016/j.compstruc.2005.02.018
Rocchini, C., Cignoni, P., Montani, C., Pingi, P., & Scopigno, R. (2001). A low cost 3D scanner based on structured light. Computer Graphics Forum, 20(3), 299-308. doi:10.1111/1467-8659.00522
Bianchi, M. G., Casula, G., Cuccuru, F., Fais, S., Ligas, P., & Ferrara, C. (2018). Three-dimensional imaging from laser scanner, photogrammetric and acoustic non-destructive techniques in the characterization of stone building materials. Advances in Geosciences, 45, 57-62. doi:10.5194/adgeo-45-57-2018
Alvarez, L., Moreno, H., Segales, A., Pham, T., Pillar-Little, E., & Chilson, P. (2018). Merging Unmanned Aerial Systems (UAS) Imagery and Echo Soundings with an Adaptive Sampling Technique for Bathymetric Surveys. Remote Sensing, 10(9), 1362. doi:10.3390/rs10091362
Miller, B. S., Wotherspoon, S., Rankin, S., Calderan, S., Leaper, R., & Keating, J. L. (2018). Estimating drift of directional sonobuoys from acoustic bearings. The Journal of the Acoustical Society of America, 143(1), EL25-EL30. doi:10.1121/1.5020621
Zhang, D., Li, S., Bai, X., Yang, Y., & Chu, Y. (2019). Experimental Study on Mechanical Properties, Energy Dissipation Characteristics and Acoustic Emission Parameters of Compression Failure of Sandstone Specimens Containing En Echelon Flaws. Applied Sciences, 9(3), 596. doi:10.3390/app9030596
Hartley, R. I., & Schaffalitzky, F. (2009). Reconstruction from Projections Using Grassmann Tensors. International Journal of Computer Vision, 83(3), 274-293. doi:10.1007/s11263-009-0225-1
Ahmadabadian, A. H., Robson, S., Boehm, J., Shortis, M., Wenzel, K., & Fritsch, D. (2013). A comparison of dense matching algorithms for scaled surface reconstruction using stereo camera rigs. ISPRS Journal of Photogrammetry and Remote Sensing, 78, 157-167. doi:10.1016/j.isprsjprs.2013.01.015
Olague, G., & Dunn, E. (2007). Development of a practical photogrammetric network design using evolutionary computing. The Photogrammetric Record, 22(117), 22-38. doi:10.1111/j.1477-9730.2007.00403.x
Hirschmuller, H. (2008). Stereo Processing by Semiglobal Matching and Mutual Information. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(2), 328-341. doi:10.1109/tpami.2007.1166
Chen, Y., & Wang, L. (2014). Periodic co-continuous acoustic metamaterials with overlapping locally resonant and Bragg band gaps. Applied Physics Letters, 105(19), 191907. doi:10.1063/1.4902129
Kaina, N., Causier, A., Bourlier, Y., Fink, M., Berthelot, T., & Lerosey, G. (2017). Slow waves in locally resonant metamaterials line defect waveguides. Scientific Reports, 7(1). doi:10.1038/s41598-017-15403-8
Cummer, S. A., Christensen, J., & Alù, A. (2016). Controlling sound with acoustic metamaterials. Nature Reviews Materials, 1(3). doi:10.1038/natrevmats.2016.1
Sigalas, M. M., & Economou, E. N. (1992). Elastic and acoustic wave band structure. Journal of Sound and Vibration, 158(2), 377-382. doi:10.1016/0022-460x(92)90059-7
Sánchez-Pérez, J. V., Caballero, D., Mártinez-Sala, R., Rubio, C., Sánchez-Dehesa, J., Meseguer, F., … Gálvez, F. (1998). Sound Attenuation by a Two-Dimensional Array of Rigid Cylinders. Physical Review Letters, 80(24), 5325-5328. doi:10.1103/physrevlett.80.5325
Sanchez-Perez, J. V., Rubio, C., Martinez-Sala, R., Sanchez-Grandia, R., & Gomez, V. (2002). Acoustic barriers based on periodic arrays of scatterers. Applied Physics Letters, 81(27), 5240-5242. doi:10.1063/1.1533112
[-]