Mostrar el registro sencillo del ítem
dc.contributor.author | Chicharro, Francisco I. | es_ES |
dc.contributor.author | Cordero Barbero, Alicia | es_ES |
dc.contributor.author | Garrido-Saez, Neus | es_ES |
dc.contributor.author | Torregrosa Sánchez, Juan Ramón | es_ES |
dc.date.accessioned | 2021-03-17T04:32:05Z | |
dc.date.available | 2021-03-17T04:32:05Z | |
dc.date.issued | 2019-10-03 | es_ES |
dc.identifier.issn | 1023-6198 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/163984 | |
dc.description.abstract | [EN] A bi-parametric family of iterative schemes for solving nonlinear systems is presented. We prove for any value of parameters the sixth-order of convergence of any members of the class. The efficiency and computational efficiency indices are studied for this family and compared with that of the other known schemes with similar structure. In the numerical section, we solve, after discretizating, the nonlinear boundary problem described by the Fisher's equation. This numerical example confirms the theoretical results and show the performance of the proposed schemes. | es_ES |
dc.description.sponsorship | This research was partially supported by both Ministerio de Ciencia, Innovacion y Universidades and Generalitat Valenciana [grant numbers PGC2018-095896-B-C22 and PROMETEO/2016/089], respectively. The authors would like to thank the anonymous reviewers for their helpful comments and suggestions. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Taylor & Francis | es_ES |
dc.relation.ispartof | The Journal of Difference Equations and Applications | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Nonlinear systems | es_ES |
dc.subject | Iterative methods | es_ES |
dc.subject | Order of convergence | es_ES |
dc.subject | Divided difference operator | es_ES |
dc.subject | Efficiency index | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | A new efficient parametric family of iterative methods for solving nonlinear systems | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1080/10236198.2019.1665653 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-095896-B-C22/ES/DISEÑO, ANALISIS Y ESTABILIDAD DE PROCESOS ITERATIVOS APLICADOS A LAS ECUACIONES INTEGRALES Y MATRICIALES Y A LA COMUNICACION AEROESPACIAL/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F089/ES/Resolución de ecuaciones y sistemas no lineales mediante técnicas iterativas: análisis dinámico y aplicaciones/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Matemática Multidisciplinar - Institut Universitari de Matemàtica Multidisciplinària | es_ES |
dc.description.bibliographicCitation | Chicharro, FI.; Cordero Barbero, A.; Garrido-Saez, N.; Torregrosa Sánchez, JR. (2019). A new efficient parametric family of iterative methods for solving nonlinear systems. The Journal of Difference Equations and Applications. 25(9-10):1454-1467. https://doi.org/10.1080/10236198.2019.1665653 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1080/10236198.2019.1665653 | es_ES |
dc.description.upvformatpinicio | 1454 | es_ES |
dc.description.upvformatpfin | 1467 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 25 | es_ES |
dc.description.issue | 9-10 | es_ES |
dc.relation.pasarela | S\393516 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.description.references | Amat, S., & Busquier, S. (2017). After notes on Chebyshev’s iterative method. Applied Mathematics and Nonlinear Sciences, 2(1), 1-12. doi:10.21042/amns.2017.1.00001 | es_ES |
dc.description.references | Amiri, A. R., Cordero, A., Darvishi, M. T., & Torregrosa, J. R. (2018). Preserving the order of convergence: Low-complexity Jacobian-free iterative schemes for solving nonlinear systems. Journal of Computational and Applied Mathematics, 337, 87-97. doi:10.1016/j.cam.2018.01.004 | es_ES |
dc.description.references | Awawdeh, F. (2009). On new iterative method for solving systems of nonlinear equations. Numerical Algorithms, 54(3), 395-409. doi:10.1007/s11075-009-9342-8 | es_ES |
dc.description.references | Cordero, A., Hueso, J. L., Martínez, E., & Torregrosa, J. R. (2009). A modified Newton-Jarratt’s composition. Numerical Algorithms, 55(1), 87-99. doi:10.1007/s11075-009-9359-z | es_ES |
dc.description.references | Cordero, A., Gómez, E., & Torregrosa, J. R. (2017). Efficient High-Order Iterative Methods for Solving Nonlinear Systems and Their Application on Heat Conduction Problems. Complexity, 2017, 1-11. doi:10.1155/2017/6457532 | es_ES |
dc.description.references | Cordero, A., Jordán, C., Sanabria-Codesal, E., & Torregrosa, J. R. (2018). Highly efficient iterative algorithms for solving nonlinear systems with arbitrary order of convergence p+3, p≥5. Journal of Computational and Applied Mathematics, 330, 748-758. doi:10.1016/j.cam.2017.02.032 | es_ES |
dc.description.references | Grau-Sánchez, M., Grau, À., & Noguera, M. (2011). Ostrowski type methods for solving systems of nonlinear equations. Applied Mathematics and Computation, 218(6), 2377-2385. doi:10.1016/j.amc.2011.08.011 | es_ES |
dc.description.references | Grosan, C., & Abraham, A. (2008). A New Approach for Solving Nonlinear Equations Systems. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, 38(3), 698-714. doi:10.1109/tsmca.2008.918599 | es_ES |
dc.description.references | Hueso, J. L., Martínez, E., & Teruel, C. (2015). Convergence, efficiency and dynamics of new fourth and sixth order families of iterative methods for nonlinear systems. Journal of Computational and Applied Mathematics, 275, 412-420. doi:10.1016/j.cam.2014.06.010 | es_ES |
dc.description.references | Khalique, C. M., & Mhlanga, I. E. (2018). Travelling waves and conservation laws of a (2+1)-dimensional coupling system with Korteweg-de Vries equation. Applied Mathematics and Nonlinear Sciences, 3(1), 241-254. doi:10.21042/amns.2018.1.00018 | es_ES |
dc.description.references | Sharma, J. R., & Arora, H. (2013). Efficient Jarratt-like methods for solving systems of nonlinear equations. Calcolo, 51(1), 193-210. doi:10.1007/s10092-013-0097-1 | es_ES |
dc.description.references | Soleymani, F., Lotfi, T., & Bakhtiari, P. (2013). A multi-step class of iterative methods for nonlinear systems. Optimization Letters, 8(3), 1001-1015. doi:10.1007/s11590-013-0617-6 | es_ES |
dc.description.references | Wang, X., Zhang, T., Qian, W., & Teng, M. (2015). Seventh-order derivative-free iterative method for solving nonlinear systems. Numerical Algorithms, 70(3), 545-558. doi:10.1007/s11075-015-9960-2 | es_ES |
dc.description.references | Xiao, X. Y., & Yin, H. W. (2015). Increasing the order of convergence for iterative methods to solve nonlinear systems. Calcolo, 53(3), 285-300. doi:10.1007/s10092-015-0149-9 | es_ES |