- -

A new efficient parametric family of iterative methods for solving nonlinear systems

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

A new efficient parametric family of iterative methods for solving nonlinear systems

Show simple item record

Files in this item

dc.contributor.author Chicharro, Francisco I. es_ES
dc.contributor.author Cordero Barbero, Alicia es_ES
dc.contributor.author Garrido-Saez, Neus es_ES
dc.contributor.author Torregrosa Sánchez, Juan Ramón es_ES
dc.date.accessioned 2021-03-17T04:32:05Z
dc.date.available 2021-03-17T04:32:05Z
dc.date.issued 2019-10-03 es_ES
dc.identifier.issn 1023-6198 es_ES
dc.identifier.uri http://hdl.handle.net/10251/163984
dc.description.abstract [EN] A bi-parametric family of iterative schemes for solving nonlinear systems is presented. We prove for any value of parameters the sixth-order of convergence of any members of the class. The efficiency and computational efficiency indices are studied for this family and compared with that of the other known schemes with similar structure. In the numerical section, we solve, after discretizating, the nonlinear boundary problem described by the Fisher's equation. This numerical example confirms the theoretical results and show the performance of the proposed schemes. es_ES
dc.description.sponsorship This research was partially supported by both Ministerio de Ciencia, Innovacion y Universidades and Generalitat Valenciana [grant numbers PGC2018-095896-B-C22 and PROMETEO/2016/089], respectively. The authors would like to thank the anonymous reviewers for their helpful comments and suggestions. es_ES
dc.language Inglés es_ES
dc.publisher Taylor & Francis es_ES
dc.relation.ispartof The Journal of Difference Equations and Applications es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Nonlinear systems es_ES
dc.subject Iterative methods es_ES
dc.subject Order of convergence es_ES
dc.subject Divided difference operator es_ES
dc.subject Efficiency index es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title A new efficient parametric family of iterative methods for solving nonlinear systems es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1080/10236198.2019.1665653 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-095896-B-C22/ES/DISEÑO, ANALISIS Y ESTABILIDAD DE PROCESOS ITERATIVOS APLICADOS A LAS ECUACIONES INTEGRALES Y MATRICIALES Y A LA COMUNICACION AEROESPACIAL/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F089/ES/Resolución de ecuaciones y sistemas no lineales mediante técnicas iterativas: análisis dinámico y aplicaciones/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Matemática Multidisciplinar - Institut Universitari de Matemàtica Multidisciplinària es_ES
dc.description.bibliographicCitation Chicharro, FI.; Cordero Barbero, A.; Garrido-Saez, N.; Torregrosa Sánchez, JR. (2019). A new efficient parametric family of iterative methods for solving nonlinear systems. The Journal of Difference Equations and Applications. 25(9-10):1454-1467. https://doi.org/10.1080/10236198.2019.1665653 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1080/10236198.2019.1665653 es_ES
dc.description.upvformatpinicio 1454 es_ES
dc.description.upvformatpfin 1467 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 25 es_ES
dc.description.issue 9-10 es_ES
dc.relation.pasarela S\393516 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Amat, S., & Busquier, S. (2017). After notes on Chebyshev’s iterative method. Applied Mathematics and Nonlinear Sciences, 2(1), 1-12. doi:10.21042/amns.2017.1.00001 es_ES
dc.description.references Amiri, A. R., Cordero, A., Darvishi, M. T., & Torregrosa, J. R. (2018). Preserving the order of convergence: Low-complexity Jacobian-free iterative schemes for solving nonlinear systems. Journal of Computational and Applied Mathematics, 337, 87-97. doi:10.1016/j.cam.2018.01.004 es_ES
dc.description.references Awawdeh, F. (2009). On new iterative method for solving systems of nonlinear equations. Numerical Algorithms, 54(3), 395-409. doi:10.1007/s11075-009-9342-8 es_ES
dc.description.references Cordero, A., Hueso, J. L., Martínez, E., & Torregrosa, J. R. (2009). A modified Newton-Jarratt’s composition. Numerical Algorithms, 55(1), 87-99. doi:10.1007/s11075-009-9359-z es_ES
dc.description.references Cordero, A., Gómez, E., & Torregrosa, J. R. (2017). Efficient High-Order Iterative Methods for Solving Nonlinear Systems and Their Application on Heat Conduction Problems. Complexity, 2017, 1-11. doi:10.1155/2017/6457532 es_ES
dc.description.references Cordero, A., Jordán, C., Sanabria-Codesal, E., & Torregrosa, J. R. (2018). Highly efficient iterative algorithms for solving nonlinear systems with arbitrary order of convergence p+3, p≥5. Journal of Computational and Applied Mathematics, 330, 748-758. doi:10.1016/j.cam.2017.02.032 es_ES
dc.description.references Grau-Sánchez, M., Grau, À., & Noguera, M. (2011). Ostrowski type methods for solving systems of nonlinear equations. Applied Mathematics and Computation, 218(6), 2377-2385. doi:10.1016/j.amc.2011.08.011 es_ES
dc.description.references Grosan, C., & Abraham, A. (2008). A New Approach for Solving Nonlinear Equations Systems. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, 38(3), 698-714. doi:10.1109/tsmca.2008.918599 es_ES
dc.description.references Hueso, J. L., Martínez, E., & Teruel, C. (2015). Convergence, efficiency and dynamics of new fourth and sixth order families of iterative methods for nonlinear systems. Journal of Computational and Applied Mathematics, 275, 412-420. doi:10.1016/j.cam.2014.06.010 es_ES
dc.description.references Khalique, C. M., & Mhlanga, I. E. (2018). Travelling waves and conservation laws of a (2+1)-dimensional coupling system with Korteweg-de Vries equation. Applied Mathematics and Nonlinear Sciences, 3(1), 241-254. doi:10.21042/amns.2018.1.00018 es_ES
dc.description.references Sharma, J. R., & Arora, H. (2013). Efficient Jarratt-like methods for solving systems of nonlinear equations. Calcolo, 51(1), 193-210. doi:10.1007/s10092-013-0097-1 es_ES
dc.description.references Soleymani, F., Lotfi, T., & Bakhtiari, P. (2013). A multi-step class of iterative methods for nonlinear systems. Optimization Letters, 8(3), 1001-1015. doi:10.1007/s11590-013-0617-6 es_ES
dc.description.references Wang, X., Zhang, T., Qian, W., & Teng, M. (2015). Seventh-order derivative-free iterative method for solving nonlinear systems. Numerical Algorithms, 70(3), 545-558. doi:10.1007/s11075-015-9960-2 es_ES
dc.description.references Xiao, X. Y., & Yin, H. W. (2015). Increasing the order of convergence for iterative methods to solve nonlinear systems. Calcolo, 53(3), 285-300. doi:10.1007/s10092-015-0149-9 es_ES


This item appears in the following Collection(s)

Show simple item record