- -

High proton conductivity at low and moderate temperature in a simple family of Prussian blue analogs, divalent transition metal hexacyanocobaltates (III)

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

High proton conductivity at low and moderate temperature in a simple family of Prussian blue analogs, divalent transition metal hexacyanocobaltates (III)

Mostrar el registro completo del ítem

Vega-Moreno, J.; Lemus-Santana, A.; Reguera, E.; Andrio, A.; Compañ Moreno, V. (2020). High proton conductivity at low and moderate temperature in a simple family of Prussian blue analogs, divalent transition metal hexacyanocobaltates (III). Electrochimica Acta. 360:1-11. https://doi.org/10.1016/j.electacta.2020.136959

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/163986

Ficheros en el ítem

Metadatos del ítem

Título: High proton conductivity at low and moderate temperature in a simple family of Prussian blue analogs, divalent transition metal hexacyanocobaltates (III)
Autor: Vega-Moreno, J. Lemus-Santana, A.A. Reguera, E. Andrio, A. Compañ Moreno, Vicente
Entidad UPV: Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada
Fecha difusión:
Resumen:
[EN] Proton conductivity behavior was studied in a family of hexacyanocobaltates with divalent transition metals (II), HCCMs. The HCCMs, with molecular formula M3[Co(CN)6]2-xH2O (where M = Ni, Co, Fe, Mn and Cd), had cubic ...[+]
Palabras clave: Hexacyanocobaltates , Conductivity , Diffusivity , Electrode polarization , Polarizability and ionic conduction
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Electrochimica Acta. (issn: 0013-4686 )
DOI: 10.1016/j.electacta.2020.136959
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.electacta.2020.136959
Código del Proyecto:
info:eu-repo/grantAgreement/UNAM//IG114818/
info:eu-repo/grantAgreement/UNAM//IG100185/
info:eu-repo/grantAgreement/CONACyT//2013-05-231461/
info:eu-repo/grantAgreement/MINECO//ENE2015-69203-R/ES/DESARROLLO Y EVALUACION DE NUEVAS MEMBRANAS POLIMERICAS REFORZADAS CON NANOFIBRAS PARA SU APLICACION EN PILAS DE COMBUSTIBLE CON ELEVADA ESTABILIDAD TERMICA/
info:eu-repo/grantAgreement/CONACyT//CB-2014-01-235840/
Agradecimientos:
This research has been supported by the ENE/2015-69203-R project, granted by the Ministerio de Economía y Competitividad (MINECO), Spain, also authors are grateful to UNAM-DGAPA-PAPIIT projects IG-100185, and IG-114818. ...[+]
Tipo: Artículo

References

Reguera, L., Balmaseda, J., del Castillo, L. F., & Reguera, E. (2008). Hydrogen Storage in Porous Cyanometalates:  Role of the Exchangeable Alkali Metal. The Journal of Physical Chemistry C, 112(14), 5589-5597. doi:10.1021/jp7117339

Liu, X.-Y., Duan, L.-Q., Wei, Q., & Chen, S.-P. (2014). Two cyanide-bridged compounds composed of Schiff base–manganese(III) building block with dicyanamido and hexacyanocobaltate(III) as ligands: Crystal structure, thermostability and magnetic property. Inorganica Chimica Acta, 423, 462-468. doi:10.1016/j.ica.2014.09.009

Ono, K., Ishizaki, M., Kanaizuka, K., Togashi, T., Yamada, T., Kitagawa, H., & Kurihara, M. (2017). Grain-Boundary-Free Super-Proton Conduction of a Solution-Processed Prussian-Blue Nanoparticle Film. Angewandte Chemie International Edition, 56(20), 5531-5535. doi:10.1002/anie.201701759 [+]
Reguera, L., Balmaseda, J., del Castillo, L. F., & Reguera, E. (2008). Hydrogen Storage in Porous Cyanometalates:  Role of the Exchangeable Alkali Metal. The Journal of Physical Chemistry C, 112(14), 5589-5597. doi:10.1021/jp7117339

Liu, X.-Y., Duan, L.-Q., Wei, Q., & Chen, S.-P. (2014). Two cyanide-bridged compounds composed of Schiff base–manganese(III) building block with dicyanamido and hexacyanocobaltate(III) as ligands: Crystal structure, thermostability and magnetic property. Inorganica Chimica Acta, 423, 462-468. doi:10.1016/j.ica.2014.09.009

Ono, K., Ishizaki, M., Kanaizuka, K., Togashi, T., Yamada, T., Kitagawa, H., & Kurihara, M. (2017). Grain-Boundary-Free Super-Proton Conduction of a Solution-Processed Prussian-Blue Nanoparticle Film. Angewandte Chemie International Edition, 56(20), 5531-5535. doi:10.1002/anie.201701759

Ohkoshi, S., Nakagawa, K., Tomono, K., Imoto, K., Tsunobuchi, Y., & Tokoro, H. (2010). High Proton Conductivity in Prussian Blue Analogues and the Interference Effect by Magnetic Ordering. Journal of the American Chemical Society, 132(19), 6620-6621. doi:10.1021/ja100385f

Simonov, A., De Baerdemaeker, T., Boström, H. L. B., Ríos Gómez, M. L., Gray, H. J., Chernyshov, D., … Goodwin, A. L. (2020). Hidden diversity of vacancy networks in Prussian blue analogues. Nature, 578(7794), 256-260. doi:10.1038/s41586-020-1980-y

Jaffe, A., & Long, J. R. (2020). Ordered absences observed in porous framework materials. Nature, 578(7794), 222-223. doi:10.1038/d41586-020-00329-5

Vega, J., Andrio, A., Lemus, A. A., del Castillo, L. F., & Compañ, V. (2017). Conductivity study of Zeolitic Imidazolate Frameworks, Tetrabutylammonium hydroxide doped with Zeolitic Imidazolate Frameworks, and mixed matrix membranes of Polyetherimide/Tetrabutylammonium hydroxide doped with Zeolitic Imidazolate Frameworks for proton conducting applications. Electrochimica Acta, 258, 153-166. doi:10.1016/j.electacta.2017.10.095

Klein, R. J., Zhang, S., Dou, S., Jones, B. H., Colby, R. H., & Runt, J. (2006). Modeling electrode polarization in dielectric spectroscopy: Ion mobility and mobile ion concentration of single-ion polymer electrolytes. The Journal of Chemical Physics, 124(14), 144903. doi:10.1063/1.2186638

Roque, J., Reguera, E., Balmaseda, J., Rodríguez-Hernández, J., Reguera, L., & del Castillo, L. F. (2007). Porous hexacyanocobaltates(III): Role of the metal on the framework properties. Microporous and Mesoporous Materials, 103(1-3), 57-71. doi:10.1016/j.micromeso.2007.01.030

J. Rodríguez-Carvajal, Introduction to the program FULLPROF: refinement of crystal and magnetic structures from powder and single crystal data, n.d.

Reguera, E., Yee-Madeira, H., Demeshko, S., Eckold, G., & Jimenez-Gallegos, J. (2009). Nature of the Observed Asymmetry in Mössbauer Spectra of Iron (2+) Hexacyanometallates (III). Zeitschrift für Physikalische Chemie, 223(6), 701-711. doi:10.1524/zpch.2009.5455

Adak, S., Daemen, L. L., Hartl, M., Williams, D., Summerhill, J., & Nakotte, H. (2011). Thermal expansion in 3d-metal Prussian Blue Analogs—A survey study. Journal of Solid State Chemistry, 184(11), 2854-2861. doi:10.1016/j.jssc.2011.08.030

Alowasheeir, A., Tominaka, S., Ide, Y., Yamauchi, Y., & Matsushita, Y. (2018). Two-dimensional cyano-bridged coordination polymer of Mn(H2O)2[Ni(CN)4]: structural analysis and proton conductivity measurements upon dehydration and rehydration. CrystEngComm, 20(42), 6713-6720. doi:10.1039/c8ce01400k

Fuentes, I., Andrio, A., Teixidor, F., Viñas, C., & Compañ, V. (2017). Enhanced conductivity of sodium versus lithium salts measured by impedance spectroscopy. Sodium cobaltacarboranes as electrolytes of choice. Physical Chemistry Chemical Physics, 19(23), 15177-15186. doi:10.1039/c7cp02526b

Bandara, T. M. W. J., Dissanayake, M. A. K. L., Albinsson, I., & Mellander, B.-E. (2011). Mobile charge carrier concentration and mobility of a polymer electrolyte containing PEO and Pr4N+I− using electrical and dielectric measurements. Solid State Ionics, 189(1), 63-68. doi:10.1016/j.ssi.2011.03.004

García-Bernabé, A., Rivera, A., Granados, A., Luis, S. V., & Compañ, V. (2016). Ionic transport on composite polymers containing covalently attached and absorbed ionic liquid fragments. Electrochimica Acta, 213, 887-897. doi:10.1016/j.electacta.2016.08.018

Compañ, V., Molla, S., García Verdugo, E., Luis, S. V., & Burguete, M. I. (2012). Synthesis and characterization of the conductivity and polarization processes in supported ionic liquid-like phases (SILLPs). Journal of Non-Crystalline Solids, 358(9), 1228-1237. doi:10.1016/j.jnoncrysol.2012.02.028

Agmon, N. (1995). The Grotthuss mechanism. Chemical Physics Letters, 244(5-6), 456-462. doi:10.1016/0009-2614(95)00905-j

Grancha, T., Ferrando-Soria, J., Cano, J., Amorós, P., Seoane, B., Gascon, J., … Pardo, E. (2016). Insights into the Dynamics of Grotthuss Mechanism in a Proton-Conducting Chiral bioMOF. Chemistry of Materials, 28(13), 4608-4615. doi:10.1021/acs.chemmater.6b01286

Taylor, J. M., Dawson, K. W., & Shimizu, G. K. H. (2013). A Water-Stable Metal–Organic Framework with Highly Acidic Pores for Proton-Conducting Applications. Journal of the American Chemical Society, 135(4), 1193-1196. doi:10.1021/ja310435e

Meng, X., Wang, H.-N., Song, S.-Y., & Zhang, H.-J. (2017). Proton-conducting crystalline porous materials. Chemical Society Reviews, 46(2), 464-480. doi:10.1039/c6cs00528d

Murugaraj, R. (2007). Ac conductivity and its scaling behavior in borate and bismuthate glasses. Journal of Materials Science, 42(24), 10065-10073. doi:10.1007/s10853-007-2052-5

Coelho, R. (1991). On the static permittivity of dipolar and conductive media — an educational approach. Journal of Non-Crystalline Solids, 131-133, 1136-1139. doi:10.1016/0022-3093(91)90740-w

Choi, U. H., Mittal, A., Price, T. L., Gibson, H. W., Runt, J., & Colby, R. H. (2013). Polymerized Ionic Liquids with Enhanced Static Dielectric Constants. Macromolecules, 46(3), 1175-1186. doi:10.1021/ma301833j

Garcia-Bernabé, A., Compañ, V., Burguete, M. I., García-Verdugo, E., Karbass, N., Luis, S. V., & Riande, E. (2010). Conductivity and Polarization Processes in Highly Cross-Linked Supported Ionic Liquid-Like Phases. The Journal of Physical Chemistry C, 114(15), 7030-7037. doi:10.1021/jp910535z

Colomban, P., & Badot, J. C. (1992). Radiowave and microwave frequency dielectric relaxations at the superionic, incommensurate and ferroelectric phase transitions in NH4HSeO4and ND4DSeO4. Journal of Physics: Condensed Matter, 4(25), 5625-5638. doi:10.1088/0953-8984/4/25/016

Zhang, Y. (1982). Electronegativities of elements in valence states and their applications. 2. A scale for strengths of Lewis acids. Inorganic Chemistry, 21(11), 3889-3893. doi:10.1021/ic00141a006

McLin, M. G., & Angell, C. A. (1992). Frequency-dependent conductivity, relaxation times, and the conductivity/viscosity coupling problem, in polymer-electrolyte solutions: LiClO4 and NaCF3SO3 in PPO 4000. Solid State Ionics, 53-56, 1027-1036. doi:10.1016/0167-2738(92)90286-x

Fragiadakis, D., Dou, S., Colby, R. H., & Runt, J. (2009). Molecular mobility and Li+ conduction in polyester copolymer ionomers based on poly(ethylene oxide). The Journal of Chemical Physics, 130(6), 064907. doi:10.1063/1.3063659

Serghei, A., Tress, M., Sangoro, J. R., & Kremer, F. (2009). Electrode polarization and charge transport at solid interfaces. Physical Review B, 80(18). doi:10.1103/physrevb.80.184301

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem