Mostrar el registro sencillo del ítem
dc.contributor.author | Vega-Moreno, J. | es_ES |
dc.contributor.author | Lemus-Santana, A.A. | es_ES |
dc.contributor.author | Reguera, E. | es_ES |
dc.contributor.author | Andrio, A. | es_ES |
dc.contributor.author | Compañ Moreno, Vicente | es_ES |
dc.date.accessioned | 2021-03-17T04:32:08Z | |
dc.date.available | 2021-03-17T04:32:08Z | |
dc.date.issued | 2020-11-10 | es_ES |
dc.identifier.issn | 0013-4686 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/163986 | |
dc.description.abstract | [EN] Proton conductivity behavior was studied in a family of hexacyanocobaltates with divalent transition metals (II), HCCMs. The HCCMs, with molecular formula M3[Co(CN)6]2-xH2O (where M = Ni, Co, Fe, Mn and Cd), had cubic crystal structures and similar cell parameters. The number of water molecules per formula unit (x) present in each HCCMs was determined from thermogravimetric analysis data. Differences in conductivity values were evaluated by running dielectric impedance experiments. The values of the permittivity and conductivity real and imaginary parts were obtained for each material. The actual conductivity part was analyzed as a temperature and frequency function. Mobilities, diffusivities, and ion charge densities were derived from the electrode polarization model that appropriately fits the loss tangent curves. The measurement conditions for all the samples were relative humidity of 99% and temperature ranging from 25 to 105 °C. The conductivity values obtained for the HCCMs varied from 10-4 to 10-2 S cm-1. At low temperatures, proton conductivity values for the nickel hexacyanocobaltate (HCCNi) stood out (from 10 -3 and 10-2 S cm-1, at 25 and 45°C, respectively), followed by Fe, Cd, Co and Mn. In addition to the results stated above, activation energies were determined using the Arrhenius model, where the obtained values were below 21.1 kJ mol-1. The proton transport activation energies suggest that the transport through the HCCM porous framework was achieved by the Grotthuss mechanism. The diffusivity in the porous framework increased with temperature for all the samples except for HCCNi, following the trend DHCCFe > DHCCMn> DHCCCo> DHCCCd. The variability observed between the samples could be related to the ion-binding energies (Eb). These results indicate that hexacyanocobaltates can be useful as mixed matrix membrane (MMM) fillers, providing excellent conductivity and diffusivity when the medium contains a sufficient amount of ionic components depending on the involved transition metal. | es_ES |
dc.description.sponsorship | This research has been supported by the ENE/2015-69203-R project, granted by the Ministerio de Economía y Competitividad (MINECO), Spain, also authors are grateful to UNAM-DGAPA-PAPIIT projects IG-100185, and IG-114818. This study was partially supported by the CONACyT (Mexico) projects 2013-05-231461 and CB-2014-01-235840. The authors appreciate the access to the experimental facility of the National Laboratory for Energy Conversion and Storage (CONACyT) to carry out the experimental study. The authors thank S. Vega from Mexican Institute of Petroleum (IMP) for reviewing and improving the English language of this work. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Electrochimica Acta | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Hexacyanocobaltates | es_ES |
dc.subject | Conductivity | es_ES |
dc.subject | Diffusivity | es_ES |
dc.subject | Electrode polarization | es_ES |
dc.subject | Polarizability and ionic conduction | es_ES |
dc.subject.classification | MAQUINAS Y MOTORES TERMICOS | es_ES |
dc.title | High proton conductivity at low and moderate temperature in a simple family of Prussian blue analogs, divalent transition metal hexacyanocobaltates (III) | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.electacta.2020.136959 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UNAM//IG114818/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UNAM//IG100185/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/CONACyT//2013-05-231461/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//ENE2015-69203-R/ES/DESARROLLO Y EVALUACION DE NUEVAS MEMBRANAS POLIMERICAS REFORZADAS CON NANOFIBRAS PARA SU APLICACION EN PILAS DE COMBUSTIBLE CON ELEVADA ESTABILIDAD TERMICA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/CONACyT//CB-2014-01-235840/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada | es_ES |
dc.description.bibliographicCitation | Vega-Moreno, J.; Lemus-Santana, A.; Reguera, E.; Andrio, A.; Compañ Moreno, V. (2020). High proton conductivity at low and moderate temperature in a simple family of Prussian blue analogs, divalent transition metal hexacyanocobaltates (III). Electrochimica Acta. 360:1-11. https://doi.org/10.1016/j.electacta.2020.136959 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.electacta.2020.136959 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 11 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 360 | es_ES |
dc.relation.pasarela | S\425646 | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Universidad Nacional Autónoma de México | es_ES |
dc.contributor.funder | Consejo Nacional de Ciencia y Tecnología, México | es_ES |
dc.description.references | Reguera, L., Balmaseda, J., del Castillo, L. F., & Reguera, E. (2008). Hydrogen Storage in Porous Cyanometalates: Role of the Exchangeable Alkali Metal. The Journal of Physical Chemistry C, 112(14), 5589-5597. doi:10.1021/jp7117339 | es_ES |
dc.description.references | Liu, X.-Y., Duan, L.-Q., Wei, Q., & Chen, S.-P. (2014). Two cyanide-bridged compounds composed of Schiff base–manganese(III) building block with dicyanamido and hexacyanocobaltate(III) as ligands: Crystal structure, thermostability and magnetic property. Inorganica Chimica Acta, 423, 462-468. doi:10.1016/j.ica.2014.09.009 | es_ES |
dc.description.references | Ono, K., Ishizaki, M., Kanaizuka, K., Togashi, T., Yamada, T., Kitagawa, H., & Kurihara, M. (2017). Grain-Boundary-Free Super-Proton Conduction of a Solution-Processed Prussian-Blue Nanoparticle Film. Angewandte Chemie International Edition, 56(20), 5531-5535. doi:10.1002/anie.201701759 | es_ES |
dc.description.references | Ohkoshi, S., Nakagawa, K., Tomono, K., Imoto, K., Tsunobuchi, Y., & Tokoro, H. (2010). High Proton Conductivity in Prussian Blue Analogues and the Interference Effect by Magnetic Ordering. Journal of the American Chemical Society, 132(19), 6620-6621. doi:10.1021/ja100385f | es_ES |
dc.description.references | Simonov, A., De Baerdemaeker, T., Boström, H. L. B., Ríos Gómez, M. L., Gray, H. J., Chernyshov, D., … Goodwin, A. L. (2020). Hidden diversity of vacancy networks in Prussian blue analogues. Nature, 578(7794), 256-260. doi:10.1038/s41586-020-1980-y | es_ES |
dc.description.references | Jaffe, A., & Long, J. R. (2020). Ordered absences observed in porous framework materials. Nature, 578(7794), 222-223. doi:10.1038/d41586-020-00329-5 | es_ES |
dc.description.references | Vega, J., Andrio, A., Lemus, A. A., del Castillo, L. F., & Compañ, V. (2017). Conductivity study of Zeolitic Imidazolate Frameworks, Tetrabutylammonium hydroxide doped with Zeolitic Imidazolate Frameworks, and mixed matrix membranes of Polyetherimide/Tetrabutylammonium hydroxide doped with Zeolitic Imidazolate Frameworks for proton conducting applications. Electrochimica Acta, 258, 153-166. doi:10.1016/j.electacta.2017.10.095 | es_ES |
dc.description.references | Klein, R. J., Zhang, S., Dou, S., Jones, B. H., Colby, R. H., & Runt, J. (2006). Modeling electrode polarization in dielectric spectroscopy: Ion mobility and mobile ion concentration of single-ion polymer electrolytes. The Journal of Chemical Physics, 124(14), 144903. doi:10.1063/1.2186638 | es_ES |
dc.description.references | Roque, J., Reguera, E., Balmaseda, J., Rodríguez-Hernández, J., Reguera, L., & del Castillo, L. F. (2007). Porous hexacyanocobaltates(III): Role of the metal on the framework properties. Microporous and Mesoporous Materials, 103(1-3), 57-71. doi:10.1016/j.micromeso.2007.01.030 | es_ES |
dc.description.references | J. Rodríguez-Carvajal, Introduction to the program FULLPROF: refinement of crystal and magnetic structures from powder and single crystal data, n.d. | es_ES |
dc.description.references | Reguera, E., Yee-Madeira, H., Demeshko, S., Eckold, G., & Jimenez-Gallegos, J. (2009). Nature of the Observed Asymmetry in Mössbauer Spectra of Iron (2+) Hexacyanometallates (III). Zeitschrift für Physikalische Chemie, 223(6), 701-711. doi:10.1524/zpch.2009.5455 | es_ES |
dc.description.references | Adak, S., Daemen, L. L., Hartl, M., Williams, D., Summerhill, J., & Nakotte, H. (2011). Thermal expansion in 3d-metal Prussian Blue Analogs—A survey study. Journal of Solid State Chemistry, 184(11), 2854-2861. doi:10.1016/j.jssc.2011.08.030 | es_ES |
dc.description.references | Alowasheeir, A., Tominaka, S., Ide, Y., Yamauchi, Y., & Matsushita, Y. (2018). Two-dimensional cyano-bridged coordination polymer of Mn(H2O)2[Ni(CN)4]: structural analysis and proton conductivity measurements upon dehydration and rehydration. CrystEngComm, 20(42), 6713-6720. doi:10.1039/c8ce01400k | es_ES |
dc.description.references | Fuentes, I., Andrio, A., Teixidor, F., Viñas, C., & Compañ, V. (2017). Enhanced conductivity of sodium versus lithium salts measured by impedance spectroscopy. Sodium cobaltacarboranes as electrolytes of choice. Physical Chemistry Chemical Physics, 19(23), 15177-15186. doi:10.1039/c7cp02526b | es_ES |
dc.description.references | Bandara, T. M. W. J., Dissanayake, M. A. K. L., Albinsson, I., & Mellander, B.-E. (2011). Mobile charge carrier concentration and mobility of a polymer electrolyte containing PEO and Pr4N+I− using electrical and dielectric measurements. Solid State Ionics, 189(1), 63-68. doi:10.1016/j.ssi.2011.03.004 | es_ES |
dc.description.references | García-Bernabé, A., Rivera, A., Granados, A., Luis, S. V., & Compañ, V. (2016). Ionic transport on composite polymers containing covalently attached and absorbed ionic liquid fragments. Electrochimica Acta, 213, 887-897. doi:10.1016/j.electacta.2016.08.018 | es_ES |
dc.description.references | Compañ, V., Molla, S., García Verdugo, E., Luis, S. V., & Burguete, M. I. (2012). Synthesis and characterization of the conductivity and polarization processes in supported ionic liquid-like phases (SILLPs). Journal of Non-Crystalline Solids, 358(9), 1228-1237. doi:10.1016/j.jnoncrysol.2012.02.028 | es_ES |
dc.description.references | Agmon, N. (1995). The Grotthuss mechanism. Chemical Physics Letters, 244(5-6), 456-462. doi:10.1016/0009-2614(95)00905-j | es_ES |
dc.description.references | Grancha, T., Ferrando-Soria, J., Cano, J., Amorós, P., Seoane, B., Gascon, J., … Pardo, E. (2016). Insights into the Dynamics of Grotthuss Mechanism in a Proton-Conducting Chiral bioMOF. Chemistry of Materials, 28(13), 4608-4615. doi:10.1021/acs.chemmater.6b01286 | es_ES |
dc.description.references | Taylor, J. M., Dawson, K. W., & Shimizu, G. K. H. (2013). A Water-Stable Metal–Organic Framework with Highly Acidic Pores for Proton-Conducting Applications. Journal of the American Chemical Society, 135(4), 1193-1196. doi:10.1021/ja310435e | es_ES |
dc.description.references | Meng, X., Wang, H.-N., Song, S.-Y., & Zhang, H.-J. (2017). Proton-conducting crystalline porous materials. Chemical Society Reviews, 46(2), 464-480. doi:10.1039/c6cs00528d | es_ES |
dc.description.references | Murugaraj, R. (2007). Ac conductivity and its scaling behavior in borate and bismuthate glasses. Journal of Materials Science, 42(24), 10065-10073. doi:10.1007/s10853-007-2052-5 | es_ES |
dc.description.references | Coelho, R. (1991). On the static permittivity of dipolar and conductive media — an educational approach. Journal of Non-Crystalline Solids, 131-133, 1136-1139. doi:10.1016/0022-3093(91)90740-w | es_ES |
dc.description.references | Choi, U. H., Mittal, A., Price, T. L., Gibson, H. W., Runt, J., & Colby, R. H. (2013). Polymerized Ionic Liquids with Enhanced Static Dielectric Constants. Macromolecules, 46(3), 1175-1186. doi:10.1021/ma301833j | es_ES |
dc.description.references | Garcia-Bernabé, A., Compañ, V., Burguete, M. I., García-Verdugo, E., Karbass, N., Luis, S. V., & Riande, E. (2010). Conductivity and Polarization Processes in Highly Cross-Linked Supported Ionic Liquid-Like Phases. The Journal of Physical Chemistry C, 114(15), 7030-7037. doi:10.1021/jp910535z | es_ES |
dc.description.references | Colomban, P., & Badot, J. C. (1992). Radiowave and microwave frequency dielectric relaxations at the superionic, incommensurate and ferroelectric phase transitions in NH4HSeO4and ND4DSeO4. Journal of Physics: Condensed Matter, 4(25), 5625-5638. doi:10.1088/0953-8984/4/25/016 | es_ES |
dc.description.references | Zhang, Y. (1982). Electronegativities of elements in valence states and their applications. 2. A scale for strengths of Lewis acids. Inorganic Chemistry, 21(11), 3889-3893. doi:10.1021/ic00141a006 | es_ES |
dc.description.references | McLin, M. G., & Angell, C. A. (1992). Frequency-dependent conductivity, relaxation times, and the conductivity/viscosity coupling problem, in polymer-electrolyte solutions: LiClO4 and NaCF3SO3 in PPO 4000. Solid State Ionics, 53-56, 1027-1036. doi:10.1016/0167-2738(92)90286-x | es_ES |
dc.description.references | Fragiadakis, D., Dou, S., Colby, R. H., & Runt, J. (2009). Molecular mobility and Li+ conduction in polyester copolymer ionomers based on poly(ethylene oxide). The Journal of Chemical Physics, 130(6), 064907. doi:10.1063/1.3063659 | es_ES |
dc.description.references | Serghei, A., Tress, M., Sangoro, J. R., & Kremer, F. (2009). Electrode polarization and charge transport at solid interfaces. Physical Review B, 80(18). doi:10.1103/physrevb.80.184301 | es_ES |
dc.subject.ods | 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación | es_ES |
dc.subject.ods | 07.- Asegurar el acceso a energías asequibles, fiables, sostenibles y modernas para todos | es_ES |
dc.subject.ods | 08.- Fomentar el crecimiento económico sostenido, inclusivo y sostenible, el empleo pleno y productivo, y el trabajo decente para todos | es_ES |