- -

High proton conductivity at low and moderate temperature in a simple family of Prussian blue analogs, divalent transition metal hexacyanocobaltates (III)

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

High proton conductivity at low and moderate temperature in a simple family of Prussian blue analogs, divalent transition metal hexacyanocobaltates (III)

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Vega-Moreno, J. es_ES
dc.contributor.author Lemus-Santana, A.A. es_ES
dc.contributor.author Reguera, E. es_ES
dc.contributor.author Andrio, A. es_ES
dc.contributor.author Compañ Moreno, Vicente es_ES
dc.date.accessioned 2021-03-17T04:32:08Z
dc.date.available 2021-03-17T04:32:08Z
dc.date.issued 2020-11-10 es_ES
dc.identifier.issn 0013-4686 es_ES
dc.identifier.uri http://hdl.handle.net/10251/163986
dc.description.abstract [EN] Proton conductivity behavior was studied in a family of hexacyanocobaltates with divalent transition metals (II), HCCMs. The HCCMs, with molecular formula M3[Co(CN)6]2-xH2O (where M = Ni, Co, Fe, Mn and Cd), had cubic crystal structures and similar cell parameters. The number of water molecules per formula unit (x) present in each HCCMs was determined from thermogravimetric analysis data. Differences in conductivity values were evaluated by running dielectric impedance experiments. The values of the permittivity and conductivity real and imaginary parts were obtained for each material. The actual conductivity part was analyzed as a temperature and frequency function. Mobilities, diffusivities, and ion charge densities were derived from the electrode polarization model that appropriately fits the loss tangent curves. The measurement conditions for all the samples were relative humidity of 99% and temperature ranging from 25 to 105 °C. The conductivity values obtained for the HCCMs varied from 10-4 to 10-2 S cm-1. At low temperatures, proton conductivity values for the nickel hexacyanocobaltate (HCCNi) stood out (from 10 -3 and 10-2 S cm-1, at 25 and 45°C, respectively), followed by Fe, Cd, Co and Mn. In addition to the results stated above, activation energies were determined using the Arrhenius model, where the obtained values were below 21.1 kJ mol-1. The proton transport activation energies suggest that the transport through the HCCM porous framework was achieved by the Grotthuss mechanism. The diffusivity in the porous framework increased with temperature for all the samples except for HCCNi, following the trend DHCCFe > DHCCMn> DHCCCo> DHCCCd. The variability observed between the samples could be related to the ion-binding energies (Eb). These results indicate that hexacyanocobaltates can be useful as mixed matrix membrane (MMM) fillers, providing excellent conductivity and diffusivity when the medium contains a sufficient amount of ionic components depending on the involved transition metal. es_ES
dc.description.sponsorship This research has been supported by the ENE/2015-69203-R project, granted by the Ministerio de Economía y Competitividad (MINECO), Spain, also authors are grateful to UNAM-DGAPA-PAPIIT projects IG-100185, and IG-114818. This study was partially supported by the CONACyT (Mexico) projects 2013-05-231461 and CB-2014-01-235840. The authors appreciate the access to the experimental facility of the National Laboratory for Energy Conversion and Storage (CONACyT) to carry out the experimental study. The authors thank S. Vega from Mexican Institute of Petroleum (IMP) for reviewing and improving the English language of this work. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Electrochimica Acta es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Hexacyanocobaltates es_ES
dc.subject Conductivity es_ES
dc.subject Diffusivity es_ES
dc.subject Electrode polarization es_ES
dc.subject Polarizability and ionic conduction es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title High proton conductivity at low and moderate temperature in a simple family of Prussian blue analogs, divalent transition metal hexacyanocobaltates (III) es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.electacta.2020.136959 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UNAM//IG114818/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UNAM//IG100185/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CONACyT//2013-05-231461/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//ENE2015-69203-R/ES/DESARROLLO Y EVALUACION DE NUEVAS MEMBRANAS POLIMERICAS REFORZADAS CON NANOFIBRAS PARA SU APLICACION EN PILAS DE COMBUSTIBLE CON ELEVADA ESTABILIDAD TERMICA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CONACyT//CB-2014-01-235840/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada es_ES
dc.description.bibliographicCitation Vega-Moreno, J.; Lemus-Santana, A.; Reguera, E.; Andrio, A.; Compañ Moreno, V. (2020). High proton conductivity at low and moderate temperature in a simple family of Prussian blue analogs, divalent transition metal hexacyanocobaltates (III). Electrochimica Acta. 360:1-11. https://doi.org/10.1016/j.electacta.2020.136959 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.electacta.2020.136959 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 11 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 360 es_ES
dc.relation.pasarela S\425646 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Universidad Nacional Autónoma de México es_ES
dc.contributor.funder Consejo Nacional de Ciencia y Tecnología, México es_ES
dc.description.references Reguera, L., Balmaseda, J., del Castillo, L. F., & Reguera, E. (2008). Hydrogen Storage in Porous Cyanometalates:  Role of the Exchangeable Alkali Metal. The Journal of Physical Chemistry C, 112(14), 5589-5597. doi:10.1021/jp7117339 es_ES
dc.description.references Liu, X.-Y., Duan, L.-Q., Wei, Q., & Chen, S.-P. (2014). Two cyanide-bridged compounds composed of Schiff base–manganese(III) building block with dicyanamido and hexacyanocobaltate(III) as ligands: Crystal structure, thermostability and magnetic property. Inorganica Chimica Acta, 423, 462-468. doi:10.1016/j.ica.2014.09.009 es_ES
dc.description.references Ono, K., Ishizaki, M., Kanaizuka, K., Togashi, T., Yamada, T., Kitagawa, H., & Kurihara, M. (2017). Grain-Boundary-Free Super-Proton Conduction of a Solution-Processed Prussian-Blue Nanoparticle Film. Angewandte Chemie International Edition, 56(20), 5531-5535. doi:10.1002/anie.201701759 es_ES
dc.description.references Ohkoshi, S., Nakagawa, K., Tomono, K., Imoto, K., Tsunobuchi, Y., & Tokoro, H. (2010). High Proton Conductivity in Prussian Blue Analogues and the Interference Effect by Magnetic Ordering. Journal of the American Chemical Society, 132(19), 6620-6621. doi:10.1021/ja100385f es_ES
dc.description.references Simonov, A., De Baerdemaeker, T., Boström, H. L. B., Ríos Gómez, M. L., Gray, H. J., Chernyshov, D., … Goodwin, A. L. (2020). Hidden diversity of vacancy networks in Prussian blue analogues. Nature, 578(7794), 256-260. doi:10.1038/s41586-020-1980-y es_ES
dc.description.references Jaffe, A., & Long, J. R. (2020). Ordered absences observed in porous framework materials. Nature, 578(7794), 222-223. doi:10.1038/d41586-020-00329-5 es_ES
dc.description.references Vega, J., Andrio, A., Lemus, A. A., del Castillo, L. F., & Compañ, V. (2017). Conductivity study of Zeolitic Imidazolate Frameworks, Tetrabutylammonium hydroxide doped with Zeolitic Imidazolate Frameworks, and mixed matrix membranes of Polyetherimide/Tetrabutylammonium hydroxide doped with Zeolitic Imidazolate Frameworks for proton conducting applications. Electrochimica Acta, 258, 153-166. doi:10.1016/j.electacta.2017.10.095 es_ES
dc.description.references Klein, R. J., Zhang, S., Dou, S., Jones, B. H., Colby, R. H., & Runt, J. (2006). Modeling electrode polarization in dielectric spectroscopy: Ion mobility and mobile ion concentration of single-ion polymer electrolytes. The Journal of Chemical Physics, 124(14), 144903. doi:10.1063/1.2186638 es_ES
dc.description.references Roque, J., Reguera, E., Balmaseda, J., Rodríguez-Hernández, J., Reguera, L., & del Castillo, L. F. (2007). Porous hexacyanocobaltates(III): Role of the metal on the framework properties. Microporous and Mesoporous Materials, 103(1-3), 57-71. doi:10.1016/j.micromeso.2007.01.030 es_ES
dc.description.references J. Rodríguez-Carvajal, Introduction to the program FULLPROF: refinement of crystal and magnetic structures from powder and single crystal data, n.d. es_ES
dc.description.references Reguera, E., Yee-Madeira, H., Demeshko, S., Eckold, G., & Jimenez-Gallegos, J. (2009). Nature of the Observed Asymmetry in Mössbauer Spectra of Iron (2+) Hexacyanometallates (III). Zeitschrift für Physikalische Chemie, 223(6), 701-711. doi:10.1524/zpch.2009.5455 es_ES
dc.description.references Adak, S., Daemen, L. L., Hartl, M., Williams, D., Summerhill, J., & Nakotte, H. (2011). Thermal expansion in 3d-metal Prussian Blue Analogs—A survey study. Journal of Solid State Chemistry, 184(11), 2854-2861. doi:10.1016/j.jssc.2011.08.030 es_ES
dc.description.references Alowasheeir, A., Tominaka, S., Ide, Y., Yamauchi, Y., & Matsushita, Y. (2018). Two-dimensional cyano-bridged coordination polymer of Mn(H2O)2[Ni(CN)4]: structural analysis and proton conductivity measurements upon dehydration and rehydration. CrystEngComm, 20(42), 6713-6720. doi:10.1039/c8ce01400k es_ES
dc.description.references Fuentes, I., Andrio, A., Teixidor, F., Viñas, C., & Compañ, V. (2017). Enhanced conductivity of sodium versus lithium salts measured by impedance spectroscopy. Sodium cobaltacarboranes as electrolytes of choice. Physical Chemistry Chemical Physics, 19(23), 15177-15186. doi:10.1039/c7cp02526b es_ES
dc.description.references Bandara, T. M. W. J., Dissanayake, M. A. K. L., Albinsson, I., & Mellander, B.-E. (2011). Mobile charge carrier concentration and mobility of a polymer electrolyte containing PEO and Pr4N+I− using electrical and dielectric measurements. Solid State Ionics, 189(1), 63-68. doi:10.1016/j.ssi.2011.03.004 es_ES
dc.description.references García-Bernabé, A., Rivera, A., Granados, A., Luis, S. V., & Compañ, V. (2016). Ionic transport on composite polymers containing covalently attached and absorbed ionic liquid fragments. Electrochimica Acta, 213, 887-897. doi:10.1016/j.electacta.2016.08.018 es_ES
dc.description.references Compañ, V., Molla, S., García Verdugo, E., Luis, S. V., & Burguete, M. I. (2012). Synthesis and characterization of the conductivity and polarization processes in supported ionic liquid-like phases (SILLPs). Journal of Non-Crystalline Solids, 358(9), 1228-1237. doi:10.1016/j.jnoncrysol.2012.02.028 es_ES
dc.description.references Agmon, N. (1995). The Grotthuss mechanism. Chemical Physics Letters, 244(5-6), 456-462. doi:10.1016/0009-2614(95)00905-j es_ES
dc.description.references Grancha, T., Ferrando-Soria, J., Cano, J., Amorós, P., Seoane, B., Gascon, J., … Pardo, E. (2016). Insights into the Dynamics of Grotthuss Mechanism in a Proton-Conducting Chiral bioMOF. Chemistry of Materials, 28(13), 4608-4615. doi:10.1021/acs.chemmater.6b01286 es_ES
dc.description.references Taylor, J. M., Dawson, K. W., & Shimizu, G. K. H. (2013). A Water-Stable Metal–Organic Framework with Highly Acidic Pores for Proton-Conducting Applications. Journal of the American Chemical Society, 135(4), 1193-1196. doi:10.1021/ja310435e es_ES
dc.description.references Meng, X., Wang, H.-N., Song, S.-Y., & Zhang, H.-J. (2017). Proton-conducting crystalline porous materials. Chemical Society Reviews, 46(2), 464-480. doi:10.1039/c6cs00528d es_ES
dc.description.references Murugaraj, R. (2007). Ac conductivity and its scaling behavior in borate and bismuthate glasses. Journal of Materials Science, 42(24), 10065-10073. doi:10.1007/s10853-007-2052-5 es_ES
dc.description.references Coelho, R. (1991). On the static permittivity of dipolar and conductive media — an educational approach. Journal of Non-Crystalline Solids, 131-133, 1136-1139. doi:10.1016/0022-3093(91)90740-w es_ES
dc.description.references Choi, U. H., Mittal, A., Price, T. L., Gibson, H. W., Runt, J., & Colby, R. H. (2013). Polymerized Ionic Liquids with Enhanced Static Dielectric Constants. Macromolecules, 46(3), 1175-1186. doi:10.1021/ma301833j es_ES
dc.description.references Garcia-Bernabé, A., Compañ, V., Burguete, M. I., García-Verdugo, E., Karbass, N., Luis, S. V., & Riande, E. (2010). Conductivity and Polarization Processes in Highly Cross-Linked Supported Ionic Liquid-Like Phases. The Journal of Physical Chemistry C, 114(15), 7030-7037. doi:10.1021/jp910535z es_ES
dc.description.references Colomban, P., & Badot, J. C. (1992). Radiowave and microwave frequency dielectric relaxations at the superionic, incommensurate and ferroelectric phase transitions in NH4HSeO4and ND4DSeO4. Journal of Physics: Condensed Matter, 4(25), 5625-5638. doi:10.1088/0953-8984/4/25/016 es_ES
dc.description.references Zhang, Y. (1982). Electronegativities of elements in valence states and their applications. 2. A scale for strengths of Lewis acids. Inorganic Chemistry, 21(11), 3889-3893. doi:10.1021/ic00141a006 es_ES
dc.description.references McLin, M. G., & Angell, C. A. (1992). Frequency-dependent conductivity, relaxation times, and the conductivity/viscosity coupling problem, in polymer-electrolyte solutions: LiClO4 and NaCF3SO3 in PPO 4000. Solid State Ionics, 53-56, 1027-1036. doi:10.1016/0167-2738(92)90286-x es_ES
dc.description.references Fragiadakis, D., Dou, S., Colby, R. H., & Runt, J. (2009). Molecular mobility and Li+ conduction in polyester copolymer ionomers based on poly(ethylene oxide). The Journal of Chemical Physics, 130(6), 064907. doi:10.1063/1.3063659 es_ES
dc.description.references Serghei, A., Tress, M., Sangoro, J. R., & Kremer, F. (2009). Electrode polarization and charge transport at solid interfaces. Physical Review B, 80(18). doi:10.1103/physrevb.80.184301 es_ES
dc.subject.ods 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación es_ES
dc.subject.ods 07.- Asegurar el acceso a energías asequibles, fiables, sostenibles y modernas para todos es_ES
dc.subject.ods 08.- Fomentar el crecimiento económico sostenido, inclusivo y sostenible, el empleo pleno y productivo, y el trabajo decente para todos es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem