- -

A Semiconducting Bi2O2(C4O4) Coordination Polymer Showing a Photoelectric Response

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by


A Semiconducting Bi2O2(C4O4) Coordination Polymer Showing a Photoelectric Response

Show full item record

Babaryk, AA.; Contreras Almengor, OR.; Cabrero-Antonino, M.; Navalón Oltra, S.; García Gómez, H.; Horcajada, P. (2020). A Semiconducting Bi2O2(C4O4) Coordination Polymer Showing a Photoelectric Response. Inorganic Chemistry. 59(6):3406-3416. https://doi.org/10.1021/acs.inorgchem.9b03290

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/164056

Files in this item

Item Metadata

Title: A Semiconducting Bi2O2(C4O4) Coordination Polymer Showing a Photoelectric Response
Author: Babaryk, Artem A. Contreras Almengor, Oscar R. Cabrero-Antonino, Maria Navalón Oltra, Sergio García Gómez, Hermenegildo Horcajada, Patricia
UPV Unit: Universitat Politècnica de València. Departamento de Química - Departament de Química
Issued date:
[EN] Inorganic semiconductors are extensively considered to be among the most promising materials to convert solar light into electricity or chemical energy owing to their efficiency in the separation of photoinduced ...[+]
Copyrigths: Reserva de todos los derechos
Inorganic Chemistry. (issn: 0020-1669 )
DOI: 10.1021/acs.inorgchem.9b03290
American Chemical Society
Publisher version: https://doi.org/10.1021/acs.inorgchem.9b03290
Project ID:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-099482-A-I00/ES/DESCOMPOSICION FOTOCATALITICA DEL AGUA ASISTIDA POR LUZ VISIBLE EMPLEANDO MATERIALES NOVEDOSOS Y MULTIFUNCIONALES UIO-66%2F67/
Description: This document is the Accepted Manuscript version of a Published Work that appeared in final form in Inorganic Chemistry, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/acs.inorgchem.9b03290.
The authors acknowledge Ra-Phuel (Grant ENE2016-79608-C2-1-R), Ramon y Cajal Grant RYC-2014-15039 (Ministerio de Ciencia, Investigacion y Universidades), and Fundacion Ramon Areces (H + MOFs) for financial support. S.N. ...[+]
Type: Artículo


Lund, H. (2007). Renewable energy strategies for sustainable development. Energy, 32(6), 912-919. doi:10.1016/j.energy.2006.10.017

Omer, A. M. (2008). Energy, environment and sustainable development. Renewable and Sustainable Energy Reviews, 12(9), 2265-2300. doi:10.1016/j.rser.2007.05.001

Crabtree, G. W., & Lewis, N. S. (2007). Solar energy conversion. Physics Today, 60(3), 37-42. doi:10.1063/1.2718755 [+]
Lund, H. (2007). Renewable energy strategies for sustainable development. Energy, 32(6), 912-919. doi:10.1016/j.energy.2006.10.017

Omer, A. M. (2008). Energy, environment and sustainable development. Renewable and Sustainable Energy Reviews, 12(9), 2265-2300. doi:10.1016/j.rser.2007.05.001

Crabtree, G. W., & Lewis, N. S. (2007). Solar energy conversion. Physics Today, 60(3), 37-42. doi:10.1063/1.2718755

Gust, D., Moore, T. A., & Moore, A. L. (2009). Solar Fuels via Artificial Photosynthesis. Accounts of Chemical Research, 42(12), 1890-1898. doi:10.1021/ar900209b

Arakawa, H., & Sayama, K. (2000). Oxide semiconductor materials for solar light energy utilization. Research on Chemical Intermediates, 26(2), 145-152. doi:10.1163/156856700x00183

Sang, Y., Liu, H., & Umar, A. (2014). Photocatalysis from UV/Vis to Near-Infrared Light: Towards Full Solar-Light Spectrum Activity. ChemCatChem, 7(4), 559-573. doi:10.1002/cctc.201402812

Wang, Q., & Domen, K. (2019). Particulate Photocatalysts for Light-Driven Water Splitting: Mechanisms, Challenges, and Design Strategies. Chemical Reviews, 120(2), 919-985. doi:10.1021/acs.chemrev.9b00201

Liu, Z., & Yan, F. (2012). The Application of Bismuth-Based Oxides in Organic-Inorganic Hybrid Photovoltaic Devices. Journal of the American Ceramic Society, 95(6), 1944-1948. doi:10.1111/j.1551-2916.2012.05088.x

Raza, W., Haque, M. M., Muneer, M., Harada, T., & Matsumura, M. (2015). Synthesis, characterization and photocatalytic performance of visible light induced bismuth oxide nanoparticle. Journal of Alloys and Compounds, 648, 641-650. doi:10.1016/j.jallcom.2015.06.245

Gomez, C. L., Depablos-Rivera, O., Silva-Bermudez, P., Muhl, S., Zeinert, A., Lejeune, M., … Rodil, S. E. (2015). Opto-electronic properties of bismuth oxide films presenting different crystallographic phases. Thin Solid Films, 578, 103-112. doi:10.1016/j.tsf.2015.02.020

MEDERNACH, J. W., & SNYDER, R. L. (1978). Powder Diffraction Patterns and Structures of the Bismuth Oxides. Journal of the American Ceramic Society, 61(11-12), 494-497. doi:10.1111/j.1151-2916.1978.tb16125.x

Leontie, L., Caraman, M., Alexe, M., & Harnagea, C. (2002). Structural and optical characteristics of bismuth oxide thin films. Surface Science, 507-510, 480-485. doi:10.1016/s0039-6028(02)01289-x

Xiao, X., Liu, C., Hu, R., Zuo, X., Nan, J., Li, L., & Wang, L. (2012). Oxygen-rich bismuth oxyhalides: generalized one-pot synthesis, band structures and visible-light photocatalytic properties. Journal of Materials Chemistry, 22(43), 22840. doi:10.1039/c2jm33556e

Weidong, H., Wei, Q., Xiaohong, W., Xianbo, D., Long, C., & Zhaohua, J. (2007). The photocatalytic properties of bismuth oxide films prepared through the sol–gel method. Thin Solid Films, 515(13), 5362-5365. doi:10.1016/j.tsf.2007.01.031

Duan, F., Zheng, Y., Liu, L., Chen, M., & Xie, Y. (2010). Synthesis and photocatalytic behaviour of 3D flowerlike bismuth oxide formate architectures. Materials Letters, 64(14), 1566-1569. doi:10.1016/j.matlet.2010.04.046

Lee, G.-J., Zheng, Y.-C., & Wu, J. J. (2018). Fabrication of hierarchical bismuth oxyhalides (BiOX, X = Cl, Br, I) materials and application of photocatalytic hydrogen production from water splitting. Catalysis Today, 307, 197-204. doi:10.1016/j.cattod.2017.04.044

Huang, H., He, Y., Lin, Z., Kang, L., & Zhang, Y. (2013). Two Novel Bi-Based Borate Photocatalysts: Crystal Structure, Electronic Structure, Photoelectrochemical Properties, and Photocatalytic Activity under Simulated Solar Light Irradiation. The Journal of Physical Chemistry C, 117(44), 22986-22994. doi:10.1021/jp4084184

Liu, Y., Wang, Z., Huang, B., Yang, K., Zhang, X., Qin, X., & Dai, Y. (2010). Preparation, electronic structure, and photocatalytic properties of Bi2O2CO3 nanosheet. Applied Surface Science, 257(1), 172-175. doi:10.1016/j.apsusc.2010.06.058

Huang, H., He, Y., Li, X., Li, M., Zeng, C., Dong, F., … Zhang, Y. (2015). Bi2O2(OH)(NO3) as a desirable [Bi2O2]2+layered photocatalyst: strong intrinsic polarity, rational band structure and {001} active facets co-beneficial for robust photooxidation capability. Journal of Materials Chemistry A, 3(48), 24547-24556. doi:10.1039/c5ta07655b

Ruleova, P., Drasar, C., Lostak, P., Li, C.-P., Ballikaya, S., & Uher, C. (2010). Thermoelectric properties of Bi2O2Se. Materials Chemistry and Physics, 119(1-2), 299-302. doi:10.1016/j.matchemphys.2009.08.067

Luu, S. D. N., & Vaqueiro, P. (2015). Synthesis, characterisation and thermoelectric properties of the oxytelluride Bi2O2Te. Journal of Solid State Chemistry, 226, 219-223. doi:10.1016/j.jssc.2015.02.026

Yu, X., Marks, T. J., & Facchetti, A. (2016). Metal oxides for optoelectronic applications. Nature Materials, 15(4), 383-396. doi:10.1038/nmat4599

Alvaro, M., Carbonell, E., Ferrer, B., Llabrés i Xamena, F. X., & Garcia, H. (2007). Semiconductor Behavior of a Metal-Organic Framework (MOF). Chemistry - A European Journal, 13(18), 5106-5112. doi:10.1002/chem.200601003

Usman, M., Mendiratta, S., & Lu, K.-L. (2016). Semiconductor Metal-Organic Frameworks: Future Low-Bandgap Materials. Advanced Materials, 29(6), 1605071. doi:10.1002/adma.201605071

Tachikawa, T., Choi, J. R., Fujitsuka, M., & Majima, T. (2008). Photoinduced Charge-Transfer Processes on MOF-5 Nanoparticles: Elucidating Differences between Metal-Organic Frameworks and Semiconductor Metal Oxides. The Journal of Physical Chemistry C, 112(36), 14090-14101. doi:10.1021/jp803620v

Feyand, M., Mugnaioli, E., Vermoortele, F., Bueken, B., Dieterich, J. M., Reimer, T., … Stock, N. (2012). Automated Diffraction Tomography for the Structure Elucidation of Twinned, Sub-micrometer Crystals of a Highly Porous, Catalytically Active Bismuth Metal-Organic Framework. Angewandte Chemie International Edition, 51(41), 10373-10376. doi:10.1002/anie.201204963

Wang, G., Sun, Q., Liu, Y., Huang, B., Dai, Y., Zhang, X., & Qin, X. (2014). A Bismuth-Based Metal-Organic Framework as an Efficient Visible-Light-Driven Photocatalyst. Chemistry - A European Journal, 21(6), 2364-2367. doi:10.1002/chem.201405047

Wang, G., Liu, Y., Huang, B., Qin, X., Zhang, X., & Dai, Y. (2015). A novel metal–organic framework based on bismuth and trimesic acid: synthesis, structure and properties. Dalton Transactions, 44(37), 16238-16241. doi:10.1039/c5dt03111g

Wang, Y., Takki, S., Cheung, O., Xu, H., Wan, W., Öhrström, L., & Inge, A. K. (2017). Elucidation of the elusive structure and formula of the active pharmaceutical ingredient bismuth subgallate by continuous rotation electron diffraction. Chemical Communications, 53(52), 7018-7021. doi:10.1039/c7cc03180g

Köppen, M., Dhakshinamoorthy, A., Inge, A. K., Cheung, O., Ångström, J., Mayer, P., & Stock, N. (2018). Synthesis, Transformation, Catalysis, and Gas Sorption Investigations on the Bismuth Metal-Organic Framework CAU-17. European Journal of Inorganic Chemistry, 2018(30), 3496-3503. doi:10.1002/ejic.201800321

Gándara, F., Gómez-Lor, B., Iglesias, M., Snejko, N., Gutiérrez-Puebla, E., & Monge, A. (2009). A new scandium metal organic framework built up from octadecasil zeolitic cages as heterogeneous catalyst. Chemical Communications, (17), 2393. doi:10.1039/b900841a

Goswami, S., Adhikary, A., Jena, H. S., Biswas, S., & Konar, S. (2013). A 3D Iron(II)-Based MOF with Squashed Cuboctahedral Nanoscopic Cages Showing Spin-Canted Long-Range Antiferromagnetic Ordering. Inorganic Chemistry, 52(20), 12064-12069. doi:10.1021/ic401886f

Usov, P. M., Keene, T. D., & D’Alessandro, D. M. (2013). A Comparative Study of the Structural, Optical, and Electrochemical Properties of Squarate-Based Coordination Frameworks. Australian Journal of Chemistry, 66(4), 429. doi:10.1071/ch12474

Liu, Z., Lin, K., Ren, Y., Kato, K., Cao, Y., Deng, J., … Xing, X. (2019). Inorganic–organic hybridization induced uniaxial zero thermal expansion in MC4O4 (M = Ba, Pb). Chemical Communications, 55(28), 4107-4110. doi:10.1039/c9cc00226j

Allen, L. C. (1989). Electronegativity is the average one-electron energy of the valence-shell electrons in ground-state free atoms. Journal of the American Chemical Society, 111(25), 9003-9014. doi:10.1021/ja00207a003

Goswami, S., Jena, H. S., & Konar, S. (2014). Study of Heterogeneous Catalysis by Iron-Squarate based 3D Metal Organic Framework for the Transformation of Tetrazines to Oxadiazole derivatives. Inorganic Chemistry, 53(14), 7071-7073. doi:10.1021/ic5003258

Lin, R.-B., Li, L., Zhou, H.-L., Wu, H., He, C., Li, S., … Chen, B. (2018). Molecular sieving of ethylene from ethane using a rigid metal–organic framework. Nature Materials, 17(12), 1128-1133. doi:10.1038/s41563-018-0206-2

Li, L., Guo, L., Zhang, Z., Yang, Q., Yang, Y., Bao, Z., … Li, J. (2019). A Robust Squarate-Based Metal–Organic Framework Demonstrates Record-High Affinity and Selectivity for Xenon over Krypton. Journal of the American Chemical Society, 141(23), 9358-9364. doi:10.1021/jacs.9b03422

Wang, Ke, Feng, Ho, Chang, Chuang, & Lee. (2019). Synthesis, Structural Characterization and Ligand-Enhanced Photo-Induced Color-Changing Behavior of Two Hydrogen-Bonded Ho(III)-Squarate Supramolecular Compounds. Polymers, 11(8), 1369. doi:10.3390/polym11081369

Boultif, A., & Louër, D. (2004). Powder pattern indexing with the dichotomy method. Journal of Applied Crystallography, 37(5), 724-731. doi:10.1107/s0021889804014876

De Wolff, P. M. (1968). A simplified criterion for the reliability of a powder pattern indexing. Journal of Applied Crystallography, 1(2), 108-113. doi:10.1107/s002188986800508x

Altomare, A., Cuocci, C., Giacovazzo, C., Moliterni, A., Rizzi, R., Corriero, N., & Falcicchio, A. (2013). EXPO2013: a kit of tools for phasing crystal structures from powder data. Journal of Applied Crystallography, 46(4), 1231-1235. doi:10.1107/s0021889813013113

Spek, A. L. (2009). Structure validation in chemical crystallography. Acta Crystallographica Section D Biological Crystallography, 65(2), 148-155. doi:10.1107/s090744490804362x

Rietveld, H. M. (1969). A profile refinement method for nuclear and magnetic structures. Journal of Applied Crystallography, 2(2), 65-71. doi:10.1107/s0021889869006558

Gonze, X., Amadon, B., Anglade, P.-M., Beuken, J.-M., Bottin, F., Boulanger, P., … Zwanziger, J. W. (2009). ABINIT: First-principles approach to material and nanosystem properties. Computer Physics Communications, 180(12), 2582-2615. doi:10.1016/j.cpc.2009.07.007

Perdew, J. P., Ruzsinszky, A., Csonka, G. I., Vydrov, O. A., Scuseria, G. E., Constantin, L. A., … Burke, K. (2008). Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces. Physical Review Letters, 100(13). doi:10.1103/physrevlett.100.136406

Hamann, D. R. (2013). Optimized norm-conserving Vanderbilt pseudopotentials. Physical Review B, 88(8). doi:10.1103/physrevb.88.085117

Hinuma, Y., Pizzi, G., Kumagai, Y., Oba, F., & Tanaka, I. (2017). Band structure diagram paths based on crystallography. Computational Materials Science, 128, 140-184. doi:10.1016/j.commatsci.2016.10.015

Becke, A. D., & Johnson, E. R. (2006). A simple effective potential for exchange. The Journal of Chemical Physics, 124(22), 221101. doi:10.1063/1.2213970

Tran, F., & Blaha, P. (2009). Accurate Band Gaps of Semiconductors and Insulators with a Semilocal Exchange-Correlation Potential. Physical Review Letters, 102(22). doi:10.1103/physrevlett.102.226401

Christensen, A. N., Jensen, T. R., Scarlett, N. V. Y., Madsen, I. C., Hanson, J. C., & Altomare, A. (2003). In-situ X-ray powder diffraction studies of hydrothermal and thermal decomposition reactions of basic bismuth(iii) nitrates in the temperature range 20–650 °C. Dalton Trans., (16), 3278-3282. doi:10.1039/b303926a

Suzuki, H., Kunioku, H., Higashi, M., Tomita, O., Kato, D., Kageyama, H., & Abe, R. (2018). Lead Bismuth Oxyhalides PbBiO2X (X = Cl, Br) as Visible-Light-Responsive Photocatalysts for Water Oxidation: Role of Lone-Pair Electrons in Valence Band Engineering. Chemistry of Materials, 30(17), 5862-5869. doi:10.1021/acs.chemmater.8b01385

Wu, X., Li, M., Li, J., Zhang, G., & Yin, S. (2017). A sillenite-type Bi12MnO20 photocatalyst: UV, visible and infrared lights responsive photocatalytic properties induced by the hybridization of Mn 3d and O 2p orbitals. Applied Catalysis B: Environmental, 219, 132-141. doi:10.1016/j.apcatb.2017.07.025

Millet, P., Sabadié, L., Galy, J., & Trombe, J. . (2003). Hydrothermal synthesis and structure of the first tin(II) squarate Sn2O(C4O4)(H2O)—comparison with Sn2[Sn2O2F4]. Journal of Solid State Chemistry, 173(1), 49-53. doi:10.1016/s0022-4596(03)00078-1

Bataille, T., Bouhali, A., Kouvatas, C., Trifa, C., Audebrand, N., & Boudaren, C. (2019). Hydrates and polymorphs of lead squarate Pb(C4O4): Structural transformations studied by in situ X-ray powder diffraction and solid state NMR. Polyhedron, 164, 123-131. doi:10.1016/j.poly.2019.02.047

Kroumova, E., Aroyo, M. I., Perez-Mato, J. M., Kirov, A., Capillas, C., Ivantchev, S., & Wondratschek, H. (2003). Bilbao Crystallographic Server : Useful Databases and Tools for Phase-Transition Studies. Phase Transitions, 76(1-2), 155-170. doi:10.1080/0141159031000076110

Junqueira, G. M. A., Rocha, W. R., De Almeida, W. B., & Dos Santos, H. F. (2002). Theoretical analysis of the oxocarbons: The solvent and counter-ion effects on the structure and spectroscopic properties of the squarate ion. Physical Chemistry Chemical Physics, 5(3), 437-445. doi:10.1039/b209740k

Cao, J., Xu, B., Lin, H., Luo, B., & Chen, S. (2012). Novel heterostructured Bi2S3/BiOI photocatalyst: facile preparation, characterization and visible light photocatalytic performance. Dalton Transactions, 41(37), 11482. doi:10.1039/c2dt30883e

Keller, E., & Krämer, V. (2005). A Strong Deviation from Vegard’s Rule: X-Ray Powder Investigations of the Three Quasi-Binary Phase Systems BiOX–BiOY (X, Y = Cl, Br, I). Zeitschrift für Naturforschung B, 60(12), 1255-1263. doi:10.1515/znb-2005-1207

Gao, X., Zhao, H., Zhao, X., Li, Z., Gao, Z., Wang, Y., & Huang, H. (2018). Aqueous phase sensing of bismuth ion using fluorescent metal-organic framework. Sensors and Actuators B: Chemical, 266, 323-328. doi:10.1016/j.snb.2018.03.139

Deibert, B. J., Velasco, E., Liu, W., Teat, S. J., Lustig, W. P., & Li, J. (2016). High-Performance Blue-Excitable Yellow Phosphor Obtained from an Activated Solvochromic Bismuth-Fluorophore Metal–Organic Framework. Crystal Growth & Design, 16(8), 4178-4182. doi:10.1021/acs.cgd.6b00622

De Mello DonegÁ, C., Ribeiro, S. J. L., Gon çalves, R. R., & Blasse, G. (1996). Luminescence and non-radiative processes in lanthanide squarate hydrates. Journal of Physics and Chemistry of Solids, 57(11), 1727-1734. doi:10.1016/0022-3697(96)00032-7

He, R., Zhou, J., Fu, H., Zhang, S., & Jiang, C. (2018). Room-temperature in situ fabrication of Bi 2 O 3 /g-C 3 N 4 direct Z-scheme photocatalyst with enhanced photocatalytic activity. Applied Surface Science, 430, 273-282. doi:10.1016/j.apsusc.2017.07.191

ZHANG, K., LIU, C., HUANG, F., ZHENG, C., & WANG, W. (2006). Study of the electronic structure and photocatalytic activity of the BiOCl photocatalyst. Applied Catalysis B: Environmental, 68(3-4), 125-129. doi:10.1016/j.apcatb.2006.08.002

Corkett, A. J., Chen, Z., Bogdanovski, D., Slabon, A., & Dronskowski, R. (2019). Band Gap Tuning in Bismuth Oxide Carbodiimide Bi2O2NCN. Inorganic Chemistry, 58(9), 6467-6473. doi:10.1021/acs.inorgchem.9b00670




This item appears in the following Collection(s)

Show full item record